Post Transcriptional Modification

Dr. Mamta Singh
Assistant Professor
COF (BASU), Kishanganj

Post Transcriptional Modification

Prokaryotes: RNA transcribed from DNA template and used immediately in protein synthesis

Eukaryotes: Primary transcript (hn RNA) must undergo certain modifications to produce mature mRNA (active form) for protein synthesis.

"Post-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an primary RNA transcript is chemically altered following transcription from a gene to produce a mature, functional RNA molecule that can then leave the nucleus and perform any of a variety of different functions in the cell."

Post Transcriptional Modifications

 Post transcriptional modifications are also responsible for changes in rRNA, tRNA and other special RNA like srpRNA, snRNA, snoRNA, miRNA etc.

Important Post Transcriptional Modifications for Production of Mature mRNA

- 1. 5' Capping
- 2. 3' maturation (Cleavage & Polyadenylation)
- 3. Splicing
- 4. Transport of RNA to Cytoplasm
- 5. Stabilization/Destabilization of mRNA

Likely order of events in producing a mature mRNA from a pre-mRNA.

5' RNA Capping

- 1. Occurs before the pre-mRNA is 30 nt long.
- 2. The modification that occurs at the 5' end of the primary transcript is called the 5' cap.
- 3. In this modification, a 7-methylguanylate residue is attached to the first nucleotide of the pre-mRNA by a 5'-5' linkage.
- 4. The 2'-hydroxyl groups of the ribose residues of the first 2 nucleotides may also be methylated.

Order of events and enzymes in 5' Capping

AdoMet = S-adenosylmethionine, the methyl donor

5' Cap Functions

Cap provides:

- 1. Protection from some ribonucleases*
- 2. Enhanced translation*
- 3. Enhanced transport from nucleus
- 4. Enhanced splicing of first intron for some pre-mRNAs

^{*}Also functions of the polyA-tail

A-12 A-12 A-200 OH 3' Polyadenylation

- 1. String of adenine nucleotide (-AAAAAAA-3') added at 3' end of primary transcript is known as polyadenylation
- 2. Most cytoplasmic mRNAs have a polyA tail (3' end) of 50-250 Adenylates
 - a notable exception is histone mRNAs
- 3. Discovered in 1971 (J. Darnell et al.)
- 4. Added post-transcriptionally by an enzyme, PolyA polymerase(s)
- 5. It involves 2 steps a): Cleavage of RNA at 3' end b): Addition of adenine residue

Specific Sequences for 3' Polyadenylation

- A cleavage sequence CA.
- Poly adenylation signal sequence.

AAUAAA

Located 10-30 nucleotides upstream to the cleavage site. Highly conserved.

GU rich sequence present 20-40 nucleotides

downstream to the cleavage site.

Polyadenylation: The Proteins

Proteins required for cleavage and polyadenylation new transcript.

James Manley

Proteins required for efficient cleavage of pre-mRNA:

- CPSF (cleavage & polyadenylation specificity factor), binds the AAUAAA
- CstF (cleavage stimulation factor) binds to the G/U rich region cooperatively with CPSF
- CFI and CFII (cleavage factors I and II), RNA-binding proteins
- 4. PAP (PolyA Polymerase)
- 5. nRNAP II (the CTD of the very large RPB1 subunit) stimulates cleavage

Functions of the PolyA-Tail

1. Promotes mRNA stability (protection from ribonucelase activity)

 De-adenylation (tail shortening) can trigger rapid degradation of the RNA

2. Enhances translation

- promotes recruitment by ribosomes
- bound by a polyA-binding protein in the cytoplasm, PAB1
- synergistic stimulation with Cap!

Splicing of mRNA

Eukaryotic gene, the coding sequence (exon) are separated/interrupted by non coding sequences (intron)

EXONS –coding sequence, transcribed and translated. Coding for amino acids in the polypeptide chain.

Vary in number, sequence and length. A gene starts and ends with exons. (5' to 3').

Some exon includes untranslated(UTR)region.

INTRONS- coding sequences are separated by noncoding sequences called introns.

Any nucleotide sequence that are removed when the primary transcript is processed to give the mature RNA are called introns.

Split Genes (Intron & Exon)

Initial exon
Internal exon
Internal coding exon
Terminal exon

Splicing (Removal of Introns)

- Removal of introns (Splicing)
- Introns or intervening sequences are the RNA sequences which do not code for the proteins.
- These introns are removed from the primary transcript in the nucleus, exons (coding sequences) are ligated to form the mRNA molecule, and the mRNA molecule is transported to the cytoplasm.
- The molecular machine that accomplishes the task of splicing is known as the spliceosome.
- Small nuclear RNA molecules that recognize splice sites in the premRNA sequence.
- The excised intron is released as a "lariat" structure, which is degraded

Spliceosome

Alternative Splicing

 The pre-m RNA molecules from some genes can be spliced in two or more alternative ways in different tissues.

 This produces multiple variations of the m RNA and thus diverse set of proteins can be synthesized from a given set of genes.

Alternative splicing can generate multiple polypeptides from a single gene (Protein A)

The mRNA for Protein A is made by splicing together exons 1, 2 and 3:

Alternative splicing can generate multiple polypeptides from a single gene (Protein B)

Or, by an alternative pathway of splicing that skips over exon2, Protein B can be made:

Thank you

- All the content and images courtesy: www.google.com
- Content used for educational purpose only