Signal Handling in Linux

Tushar B. Kute,
http://tusharkute.com

s\ tusharkute

.Com

What is a Signal?

* Asignal is an asynchronous event which is
delivered to a process.

* Asynchronous means that the event can

occur at any time may be unrelated to the
execution of the process.

* Signals are raised by some error conditions,
such as memory segment violations, floating
point processor errors, or illegal instructions.

— e.g. user types ctrl-C, or the modem hangs

Signal Sources

terminal memory
driver management

SIGHUP
SIGQUIT

shell command

SIGINT

SIGKILL -
SIGPIPE
/
SIGWINCH SIGALRM
window
manager a process
SIGUSR1
other user
processes

d\\ tusharkute
e .Lom

POSIX predefined signals

* SIGALRM: Alarm timer time-out. Generated by alarm() API.

* SIGABRT: Abort process execution. Generated by abort() API.
* SIGFPE: Illegal mathematical operation.

* SIGHUP: Controlling terminal hang-up.

* SIGILL: Execution of an illegal machine instruction.

* SIGINT: Process interruption. Can be generated by <Delete> or
<ctrl_C> keys.

* SIGKILL: Sure kill a process. Can be generated by
—"kill -9 <process_id>" command.

* SIGPIPE: Illegal write to a pipe.

* SIGQUIT: Process quit. Generated by <crtl \> keys.

* SIGSEGV: Segmentation fault. generated by de-referencing a NULL
pointer.

a\\ tusharkute
s — .com

POSIX predefined signals

* SIGTERM: process termination. Can be generated by
— "kill <process_id>" command.

* SIGUSR1: Reserved to be defined by user.

* SIGUSR2: Reserved to be defined by user.

* SIGCHLD: Sent to a parent process when its child process has
terminated.

* SIGCONT: Resume execution of a stopped process.
* SIGSTOP: Stop a process execution.

* SIGTTIN: Stop a background process when it tries to read from from its
controlling terminal.

* SIGTSTP: Stop a process execution by the control_Z keys.

* SIGTTOUT: Stop a background process when it tries to write to its
controlling terminal.

s\ tusharkute
e — .Lcom

Actions on signals

Process that receives a signal can take one of three action:
Perform the system-specified default for the signal
— notify the parent process that it is terminating;

— generate a core file; (a file containing the current memory
image of the process)

— terminate.

Ignore the signal

— A process can do ignoring with all signal but two special
signals: SIGSTOP and SIGKILL.

Catch the Signal

— When a process catches a signal, except SIGSTOP and SIGKILL,
it invokes a special signal handing routine.

a\\ tusharkute
s — .com

Example of signals

* User types Ctrl-c
— Event gains attention of OS

— OS stops the application process immediately, sending it a 2/SIGINT
signal

— Signal handler for 2/SIGINT signal executes to completion
— Default signal handler for 2/SIGINT signal exits process

* Process makes illegal memory reference Signal Number

— Event gains attention of OS /

— OS stops application process immediately, sending it a 11/SIGSEGV
signal

— Signal handler for 11/SIGSEGV signal executes to completion

— Default signal handler for 11/SIGSEGV signal prints “segmentation
fFault” and exits process

#\ tusharkute
e .com

Send signals via commands

* kill Command
—kill -signal pid
* Send a signal of type signal to the process with id pid
* Can specify either signal type name (-SIGINT) or number (-2)

— No signal type name or number specified => sends 15/SIGTERM
signal

* Default 15/SIGTERM handler exits process
—Better command name would be sendsig
* Examples
—kill -2 1234
—kill -SIGINT 1234
* Same as pressing Ctrl-c if process 1234 is running in foreground

d\tusharkute
] — .c o m

Demonstration

#include<stdio.h>
int main ()
{
while (1)
printf ("Hello World...\n");
return O;

s\ tusharkute
1 m— com

Check the output

Lo Terminal

Terminal X | Terminal x

sitrc@sitrc-OptiPlex-380:~5 ./a.out
World...
World...
World...
World...
World...
World...

Check the output

Go to new terminal and check the process list (ps -aux)

- Terminal

Terminal x | Terminal x

5961 3 76788 Jusr/1lib/1386-1linux-gnu/unit
5976 5 60084 Jusr/lib/gvfs/gvfsd-http --s
7270 G| G| [kworker/1:0]
7271]] [scsi_eh_5]
7273]] [scsi_tmf_5]
7274]] [usb-storage]
7328 2 248892 25184 Jopt/google/chrome/chrome --
7471 2 35480 5380 Jusr/lib/libreoffice/program
7489 5 512800 153396 ? : Jusr/lib/libreoffice/program
7588 2 275096 26024 ?] gedit

7724] 3348 1160 1 B /sbinfmount.ntfs fdev/sdaz /
7931]] 8 ? 3 [kworker/u16:2]
6]
9
]
6]
§]
|
5]
5]
1
B:

nd o oend oend wend eng ey ey en)

8220 G| e ? 3 [kworker/ul6:1]
B226 230648 ? B gnome-terminal
B235 2428 ? 5 gnome-pty-helper
8236 5728 pts/1 : bash
8321 3092 ? Jlib/systemd/systemd-hostnam
B358 5732 pts/5 g bash
1434] ? [kworker /u16:0]
FEEE] 2036 pts/1 B ./a.out |
sitrc 8558 .0 5232 pts/5 B PS -aux
sitrc@sitrc-OptiPlex-3860:~5 !

OO N0 000
Qe 220000 LD W00 00Q

@

0
6]
0]
0
0
i)
1
0
7
1
0
6]
i)
i]
0
i)
0]
0
5]
5]
i}
z

Kill Ehe process

« kill 8493

Terminal X | Terminal x

SIGTERM signal received

SLIrci@s1trc-OptiPlex-380:-~5 I

Killing process by different signals

e kill -SIGSEGV 8493

Terminal X | Terminal x

World...
World...
World...
World...
World...
World...
World...

World...
L SIGSEGYV signal received
Wor “ea

World...

World...

World...

World...

World...

World...

World...

World...

World...

World
Segmentation fault (core dumped)
51trc@51trc—Dptlﬁlex—3Bﬂ:~§-i

Signal Concepts

* Signals are defined in <signal.h>

- man 7 signal for complete list of signals
and their numeric values.

* kill =l for Full list of signals on a system.

* 64 signals. The first 32 are traditional
signals, the rest are for real time
applications

{:\\ tusharkute
— .C

Signal Function

* Programs can handle signals using the signal library
Function.

void (*signal(int signo, void (*Func)(int)))(int);

* signo is the signal number to handle

* func defines how to handle the signal
~SIG_IGN
—SIG_DFL
— Function pointer of a custom handler

* Returns previous disposition if ok, or SIG_ERR on error

d\tusharkute
] — .com

Example:

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void ohh(int sigq)

{
printf("Ohh! - I got signal %d\n", sig);
(void) signal (SIGINT, SIG DFL);
}
int main()
{
(void) signal(SIGINT, ohh);
while(1)
{
printf ("Hello World!\n");
sleep(1l);
}
return O;
}

d\ tusharkute
——— .com

Output

tushar@tushar-laptop gcc sigl.c
tushar@tushar-laptop y o faa.out
Hello World!

Hello World!

Hello World!

"COhh! - I got signal 2

Hello World!

Hello World!
i
tushar@tushar-laptop

Example:2

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void error(int sig)

{
printf("Ohh! its a floating point error...\n");
(void) signal (SIGFPE, SIG DFL);
}
int main()
{
(void) signal (SIGFPE, error);
int a = 12, b = 0, result;
result = a / b;
printf("Result is : %d\n",result);
return O;
}

4\ tusharkute

.Com

tushar@tushar-laptop gcc sig2.c

tushar@tushar-laptop ./a.out
Ohh! its a floating point error...
Floating point exception
tushar@tushar-laptop D

{{\\ tusharkute
O S— 'co m

sigaction

° int sigaction(int sig, const struct sigaction
*act, struct sigaction *oact);
* The sigaction structure, used to define the actions to be taken on

receipt of the signal specified by sig, is defined in signal.h and has at
least the following members:

void (*) (int) sa_handler Function, SIG_DFL or SIG_IGN
sigset_t sa_mask signals to block in sa_handler
int sa_Fflags signal action modifiers

* The sigaction function sets the action associated with the signal sig .
If oact is not null, sigaction writes the previous signal action to the
location it refers to. If act is null, this is all sigaction does. IF act isn’t
null, the action for the specified signal is set.

I
tusharkute
& — 'com

j=
I -\‘“
—

sigaction

* As with signal, sigaction returns 0 if successful and -1 if
not. The error variable errno will be set to EINVAL if the
specified signal is invalid or if an attempt is made to
catch or ignore a signal that can’t be caught or ignored.

* Within the sigaction structure pointed to by the
argument act, sa_handler is a pointer to a function
called when signal sig is received. This is much like the
Function Func you saw earlier passed to signal .

* You can use the special values SIG_IGN and SIG_DFL in
the sa_handler Field to indicate that the signal is to be
ignored or the action is to be restored to its default,
respectively.

{:\\ tusharkute
SIS S— LCom

EINDIE

void ohh(int sig)

{
printf("Ohh! - I got signal %d\n", sig);
}
int main()
{
struct sigaction act;
act.sa_handler = ohh;
sigemptyset (&act.sa mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, 0);
while (1)
{
printf ("Hello World!\n");
sleep(1);
}
}

d\ tusharkute
o — — com

Output

tushar@tushar-laptop gece 81g3.c
tushar@tushar-laptop) «/a.out
Hello World!

Hello World!

Hello World!

“COhh! - I got signal 2

Hello World!

“"COhh! - I got signal 2

Hello World!

Hello World!

"COhh! - I got signal 2

Hello World!

Hello World!

Problem Statement

* Implement the C program to demonstrate the use
of SIGCHLD signal. A parent process Creates
multiple child process (minimum three child
processes). Parent process should be Sleeping until
it creates the number of child processes. Child
processes send SIGCHLD signal to parent process to
interrupt from the sleep and force the parent to
call wait for the Collection of status of terminated
child processes.

{:\\ tusharkute
SIS S— LCom

Program

void handler (int sigqg)
{
pid_t pid;
pid = wait (NULL);
printf("\t\tChild %d exited.\n", pid);
signal (SIGCHLD, handler);
}
int main()
{
int i;
signal (SIGCHLD, handler);
for(i=0;i<3;i++)
switch(fork())

{
case O:
printf("\tChild created %d\n", getpid());
exit (0);
}

sleep(2);

return O;

d\\ tusharkute
e .Lom

Output

tushar@tushar-laptop
Parent created 5928
Child created
Parent created 5928
Child created
Chila
Parent created 5928
Child
Child created
Child

./a.out

5929

5930
5929 exited.

5930 exited.
5932
593% exited.

Thank you

This presentation is created using LibreOffice Impress 4.2.7.2, can be used freely as per GNU General Public License

Blogs
http://digitallocha.blogspot.in
http://kyamputar.blogspot.in

Web Resources
http://tusharkute.com

tushar@tusharkute.com

http://digitallocha.blogspot.in/

	Formal Template
	Example Bullet Point Slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

