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1.  Learning Outcomes 

After studying this module, you shall be able to: 

 Understand the addition of angular momenta for a multi-electron system 

 Know the commutation relations of total (or coupled) angular momentum 

 Learn about Dirac notation in quantum mechanics  

2. Angular Momentum in Quantum Mechanics  

Angular momentum is an observable for which there exists an operator in quantum 

mechanics. We have already seen in the previous modules that it is possible to measure 

angular momentum of a particle in a given quantum state (characterized by a set of 

quantum numbers).  

The classical definition of angular momentum (�⃗⃗� = �⃗� × �⃗⃗� ) is carried over to quantum mechanics 

by replacing the coordinates and momenta in the classical equation by their corresponding 

operators. The Cartesian components of angular momentum operator are  

𝑳�̂� = �̂�𝒑�̂� − �̂�𝒑�̂� = −𝒊ħ(𝒚
𝝏

𝝏𝒛
− 𝒛

𝝏

𝝏𝒚
)  

𝑳�̂� = �̂�𝒑�̂� − �̂�𝒑�̂� = −𝒊ħ(𝒛
𝝏

𝝏𝒙
− 𝒙

𝝏

𝝏𝒛
) 

𝑳�̂� = �̂�𝒑�̂� − �̂�𝒑�̂� = −𝒊ħ (𝒙
𝝏

𝝏𝒚
− 𝒚

𝝏

𝝏𝒙
)

 

 

Using the fundamental commutation property, it is known that the components of the 

angular momentum operator obey the following set of commutation relations: 

[�̂�𝒙, �̂�𝒚] = 𝒊ħ�̂�𝒛 

[�̂�𝒚, �̂�𝒛] = 𝒊ħ�̂�𝒙 

[�̂�𝒛, �̂�𝒙] = 𝒊ħ�̂�𝒚 

 

…(18.2) 

…(18.1) 
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Although the components of angular momentum operator 

do not commute with each other, however, each of them is known to commute with the 

𝐿2̂ operator. 

𝑳�̂� = 𝑳𝒙
�̂� + 𝑳𝒚

�̂� + 𝑳𝒛
�̂�   

 

[𝑳�̂�, 𝑳�̂�] = 𝟎 

[𝑳�̂�, 𝑳�̂�] = 𝟎 

[𝑳�̂�, 𝑳�̂�] = 𝟎 

 

From this we conclude that the components of angular momentum have no common 

eigen functions. Only, the total angular momentum 𝐿2̂ and any one component of angular 

momentum can share simultaneous eigen states (simultaneously measurable).  

Using the above commutation relations, the eigen values constructed for the angular 

momentum 𝐿2̂ and component 𝐿�̂�  are 

𝑳�̂�𝒀 = 𝒎𝒋ħ𝒀                     𝒎𝒋 = −𝒋,……………… ,+𝒋 

𝑳�̂�𝒀 = 𝒋(𝒋 + 𝟏)ħ𝟐𝒀           𝒋 = 𝟎, 𝟏 𝟐⁄ , 𝟏, 𝟑 𝟐⁄ , 𝟐, … ..             

 

The range of eigen values of 𝐿�̂�  is limited by j and –j, which means a total of 2j+1 eigen states are 

possible for angular momentum component 𝐿�̂�. 

Further, it has been found that the partial differential equations obtained using Cartesian 

coordinates are not separable which suggests the spherical polar coordinates as the 

natural coordinates for this problem. The angular momentum operator in spherical 

harmonics is obtained as  
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…(18.3) 

…(18.5) 

…(18.6) 

…(18.4) 
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The eigen functions of 𝐿�̂� component are dependent on only one coordinate of the 

physical system, ϕ and are given by (derived in earlier module) 
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The eigen functions of 𝐿2̂ are depend on two coordinates of the physical system and are 

given by (derived in earlier module) 
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In quantum mechanics we encounter two types of angular momenta viz., (a) Orbital 

Angular Momentum (L) due to circular motion of a particle through space and is analog 

of classical angular momentum and (b) Spin Angular Momentum (S) which is an intrinsic 

property of a particle unrelated to any sort of motion or with any classical mechanical 

significance.

 

The above mentioned relations holds true for both the spin and orbital angular momentum 

respectively. 

In this module, we will learn to calculate the angular momentum of multi-electron chemical 

systems. 
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3. Addition of Angular Momenta  

From our earlier discussions, we know that angular momentum commutes with the 

Hamiltonian. For a multi-electron system, the individual angular momentum operators of 

the electrons do not commute with the Hamiltonian, but it’s the sum of individual angular 

momentum operators that commute with the Hamiltonian. 

Suppose we consider a system of two electrons associated with angular momentum 𝐿1̂ and 

𝐿2̂ respectively.  

 

 

 

 

 

 

 
 

 

 

The eigen-values associated with the magnitude and z component of 𝐿1̂ and 𝐿2̂ respectively 

are as follows: 

  

𝑳𝟏�̂�𝒀 = 𝒎𝒋𝟏ħ𝒀                     𝒎𝒋𝟏 = −𝒋𝟏, ……………… ,+𝒋𝟏   

𝑳𝟏
�̂�𝒀 = 𝒋𝟏(𝒋𝟏 + 𝟏)ħ𝟐𝒀           𝒋𝟏 = 𝟎, 𝟏 𝟐⁄ , 𝟏, 𝟑 𝟐⁄ , 𝟐, … ..              

𝑳𝟐�̂�𝒀 = 𝒎𝒋𝟐ħ𝒀                     𝒎𝒋𝟐 = −𝒋𝟐, ……………… ,+𝒋𝟐   

𝑳𝟐
�̂�𝒀 = 𝒋𝟐(𝒋𝟐 + 𝟏)ħ𝟐𝒀           𝒋𝟐 = 𝟎, 𝟏 𝟐⁄ , 𝟏, 𝟑 𝟐⁄ , 𝟐, … ..               

 

The components of 𝐿1̂ and 𝐿2̂ obey the usual angular momentum commutation relations as 

stated above. 

[�̂�𝟏𝒙, �̂�𝟏𝒚] = 𝒊ħ�̂�𝟏𝒛  

[�̂�𝟏𝒚, �̂�𝟏𝒛] = 𝒊ħ�̂�𝟏𝒙 

[�̂�𝟏𝒛, �̂�𝟏𝒙] = 𝒊ħ�̂�𝟏𝒚 

Note: Over here, we have considered Orbital Angular Momentum (L) 
associated with both the electrons. They might be the Spin Angular-Momentum 
(S) of two electrons, or one might be the spin and the other the orbital angular 
momentum of a single electron. 
 

(a) Two Orbital angular momenta  �̂� = 𝐿1̂ + 𝐿2̂ 

(b) Two Spin angular momenta    �̂� = 𝑆1̂ + 𝑆2̂ 

(c) Orbital angular momentum and Spin  𝐽 = 𝐿1̂ + 𝑆2̂ 
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[�̂�𝟐𝒙, �̂�𝟐𝒚] = 𝒊ħ�̂�𝟐𝒛  

[�̂�𝟐𝒚, �̂�𝟐𝒛] = 𝒊ħ�̂�𝟐𝒙 

[�̂�𝟐𝒛, �̂�𝟐𝒙] = 𝒊ħ�̂�𝟐𝒚 

 

The total angular momentum for the two electron system is taken as sum of angular 

momentum associated with the two electrons respectively. 

�̂� = 𝑳�̂� + 𝑳�̂�  where the three Cartesian components of  �̂� are 

𝑳�̂� = 𝑳𝟏�̂� + 𝑳𝟐�̂�  

𝑳�̂� = 𝑳𝟏�̂� + 𝑳𝟐�̂�  

𝑳�̂� = 𝑳𝟏�̂� + 𝑳𝟐�̂�  

And the magnitude of total angular momentum is defined in the usual manner as done 

earlier. 

𝑳�̂� = 𝑳𝒙
�̂� + 𝑳𝒚

�̂� + 𝑳𝒛
�̂�  

𝑳�̂� = �̂�. �̂� = (𝑳�̂� + 𝑳�̂�). (𝑳�̂� + 𝑳�̂�) = 𝑳𝟏
�̂� + 𝑳𝟐

�̂� + 𝑳�̂�. 𝑳�̂� + 𝑳�̂�. 𝑳�̂�   

 

If 𝐿1̂ and 𝐿2̂ refer to different electrons they will commute with each other, since each will 

affect only functions of the coordinates of one electron and not the other (Non-interacting 

system). 

[�̂�𝟏, �̂�𝟐] = 𝟎  

[�̂�𝟏, �̂�𝟐] = �̂�𝟏�̂�𝟐 − �̂�𝟐�̂�𝟏 = 𝟎 ⇒ �̂�𝟏�̂�𝟐 = �̂�𝟐�̂�𝟏                

 

 

 

 

 

 

 

 

 

…(18.7) 

…(18.8) 

Even if we consider orbital 𝐿1̂ and spin angular momenta 𝑆1̂ of the same electron, they 

will commute as one will affect only functions of the spatial coordinates while the other 

will affect functions of the spin coordinates. 

[�̂�𝟏, �̂�𝟏] = 𝟎  

[�̂�𝟐, 𝑺𝟐] = 𝟎  

 

…(18.9) 
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Using equation (18.9) modifies equation (18.8) to 

𝑳�̂� = �̂�. �̂� = (𝑳�̂� + 𝑳�̂�). (𝑳�̂� + 𝑳�̂�) = 𝑳𝟏
�̂� + 𝑳𝟐

�̂� + 𝟐𝑳�̂�. 𝑳�̂�  

Substituting the components of 𝐿1̂ and 𝐿2̂ (𝑳𝒙, 𝑳𝒚𝒂𝒏𝒅 𝑳𝒛) in the above equation gives, 

𝑳�̂� = �̂�. �̂� = (𝑳�̂� + 𝑳�̂�). (𝑳�̂� + 𝑳�̂�) = 𝑳𝟏
�̂� + 𝑳𝟐

�̂� + 𝟐(�̂�𝟏𝒙. �̂�𝟐𝒙 + �̂�𝟏𝒚. �̂�𝟐𝒚 + �̂�𝟏𝒛. �̂�𝟐𝒛)    

 

To simplify the above equation, we now show that the components of the total angular 

momentum obey the usual angular-momentum commutation relations. 

[�̂�𝒙, �̂�𝒚] = [𝑳𝟏𝒙
̂ +𝑳𝟐𝒙

̂ ,𝑳𝟏𝒚
̂ +𝑳𝟐𝒚

̂ ] = [𝑳𝟏𝒙
̂ , 𝑳𝟏𝒚

̂ +𝑳𝟐𝒚
̂ ] + [𝑳𝟐𝒙

̂ ,𝑳𝟏𝒚
̂ +𝑳𝟐𝒚

̂ ]  

[�̂�𝒙, �̂�𝒚] = [𝑳𝟏𝒙
̂ , 𝑳𝟏𝒚

̂ ] + [𝑳𝟏𝒙
̂ , 𝑳𝟐𝒚

̂ ] + [𝑳𝟐𝒙
̂ ,𝑳𝟏𝒚

̂ ] + [𝑳𝟐𝒙
̂ ,𝑳𝟐𝒚

̂ ]  

 

 Using equation (18.9) modifies the above equation as  

[�̂�𝒙, �̂�𝒚] = [𝑳𝟏𝒙
̂ , 𝑳𝟏𝒚

̂ ] + [𝑳𝟐𝒙
̂ ,𝑳𝟐𝒚

̂ ] = 𝒊ħ�̂�𝟏𝒛 + 𝒊ħ�̂�𝟐𝒛 = 𝒊ħ�̂�𝒛   

 

Cyclic permutation of x, y, and z gives, 

[�̂�𝒚, �̂�𝒛] = 𝒊ħ�̂�𝒙                             

[�̂�𝒛, �̂�𝒙] = 𝒊ħ�̂�𝒚                                            

 

The same commutator algebra proves the following as well for the two electron system, 

[𝑳�̂�, 𝑳�̂�] = 𝟎  

[𝑳�̂�, 𝑳�̂�] = 𝟎 

[𝑳�̂�, 𝑳�̂�] = 𝟎 

 

After concluding that the total angular momentum operator for a multi-electron system 

obeys the usual commutation relations of the angular momentum, we will now find how 

the total angular-momentum quantum numbers J and MJ are related to the quantum 

numbers 𝑗1, 𝑗2, 𝑚𝑗1  𝑎𝑛𝑑 𝑚𝑗2 of the two angular momenta we are adding in (18.7). 

𝑳�̂�𝒀 = 𝑴𝑱ħ𝒀                     𝑴𝑱 = −𝑱,……………… ,+𝑱 

𝑳�̂�𝒀 = 𝑱(𝑱 + 𝟏)ħ𝟐𝒀           𝑱 = 𝟎, 𝟏 𝟐⁄ , 𝟏, 𝟑 𝟐⁄ , 𝟐, … ..              

 

…(18.10) 

…(18.11) 

…(18.12) 

…(18.13) 

…(18.14) 

…(18.15) 
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We further want the eigen-functions of total angular momentum of two electron system 

𝑳�̂� and its 𝑳�̂� component. These eigen-functions are characterized by the quantum 

numbers J and MJ. 

 

 

 

 

 

 

 

 

 

 

 

Using Dirac notation, we can denote the eigen-functions of total angular momentum 

operator by |𝐽𝑀𝐽 >. Similarly, let |𝑗1𝑚𝑗1 > denote the eigen-functions of 𝑳𝟏
�̂�
 and its 𝑳𝟏�̂� 

and |𝑗2𝑚𝑗2 > denote the eigen-functions of 𝑳𝟐
�̂�
 and its 𝑳𝟐�̂� . 

 

We already know from equation (18.4) that, 

[𝑳𝟏
�̂�, 𝑳𝟏�̂�] = 𝟎  

[𝑳𝟏
�̂�, 𝑳𝟏�̂�] = 𝟎 

[𝑳𝟏
�̂�, 𝑳𝟏�̂�] = 𝟎 

[𝑳𝟐
�̂�, 𝑳𝟐�̂�] = 𝟎  

[𝑳𝟐
�̂�, 𝑳𝟐�̂�] = 𝟎 

[𝑳𝟐
�̂�, 𝑳𝟐�̂�] = 𝟎 

 

 

 

Dirac Notation 
This notation also referred to as bra-ket notation is very useful in quantum mechanics. 

 A general quantum state (or wave-function) is represented as |𝜓 > called a ket vector. 

 Associated with every state |𝜓 > , there is dual < 𝜓| called bra vector. 

 The inner product of two states is given as < 𝜑|𝜓 > and is scalar (Probability amplitude) 

< 𝜑|𝜓 >= ∫ 𝑑𝑥𝜑∗(𝑥)𝜓(𝑥)
∞

−∞

=< 𝜑|𝜓 >∗ 

 

 Action of some operator A is represented by 𝐴|𝜓 >. 

 Suppose, |𝜑 >= 𝐴|𝜓 > , then < 𝜑| =< 𝜓|𝐴† (adjoint) 

 The expectation value for a normalized operator A is given by the equation 
〈𝐴〉 = 〈𝜓|𝐴|𝜓〉 

 The eigen ket of operator �̂� associated with eigen value a is denoted by |𝑎 > with 𝐴|𝑎 >=
𝑎|𝑎 > 
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Hence one can have simultaneous eigen-functions of all four operators 𝑳𝟏
�̂�, 𝑳𝟐

�̂�, 𝑳�̂�(�̂� =

𝑳�̂� + 𝑳�̂�), 𝑳�̂�(𝑳�̂� = 𝑳𝟏�̂� + 𝑳𝟐�̂�) and the eigen-functions |𝐽𝑀𝐽 > can be more fully written 

as |𝑗1𝑗2𝐽𝑀𝐽 >. However, it is important to note over here that 𝑳�̂�(𝑳 = 𝑳𝟏 + 𝑳𝟐) does not 

commute with 𝑳𝟏�̂� 𝒂𝒏𝒅 𝑳𝟐�̂�, so the eigen-functions |𝑗1𝑗2𝐽𝑀𝐽 > are not necessarily eigen-

functions of 𝑳𝟏�̂� 𝒂𝒏𝒅 𝑳𝟐�̂� ([𝑳�̂�, 𝑳𝟏�̂�] ≠ 0 𝑎𝑛𝑑[𝑳�̂�, 𝑳𝟐�̂�] ≠ 0 ). 

If we consider the complete set of functions |𝑗1𝑚𝑗1 > for electron (or entity under 

consideration) 1 and the complete set of functions |𝑗2𝑚𝑗2 > for electron 2 and form all 

possible products of the form |𝑗1𝑚𝑗1 > |𝑗2𝑚𝑗2 > , then we obtain a complete set of 

functions for the two electron system. Each unknown eigen-function |𝑗1𝑗2𝐽𝑀𝐽 > can then 

be expanded using the complete set of functions: 

 |𝑗1𝑗2𝐽𝑀𝐽 >= ∑𝐶(𝑗1𝑗2𝐽𝑀𝐽; 𝑚𝑗1𝑚𝑗2) |𝑗1𝑚𝑗1 > |𝑗2𝑚𝑗2 >        

 

where the expansion coefficients are 𝐶(𝑗1𝑗2𝐽𝑀𝐽; 𝑚𝑗1𝑚𝑗2). The functions |𝑗1𝑗2𝐽𝑀𝐽 > are 

eigen-functions of the commuting operators 𝑳𝟏
�̂�, 𝑳𝟐

�̂�, 𝑳�̂�(𝑳 = 𝑳𝟏 + 𝑳𝟐), 𝑳�̂�(𝑳𝒛 = 𝑳𝟏�̂� +

𝑳𝟐�̂�) with the following eigen-values 

 

  
  

 

   

  

The functions |𝑗1𝑚𝑗1 > |𝑗2𝑚𝑗2 > are eigen-functions of the commuting operators with the  

following eigen-values: 

 

 

  
 

 

 

 

 𝑳𝟏
�̂� 𝑳𝟐

�̂� 𝑳�̂� 𝑳�̂� 

𝒋𝟏(𝒋𝟏 + 𝟏)ħ𝟐 𝒋𝟐(𝒋𝟐 + 𝟏)ħ𝟐 𝑱(𝑱 + 𝟏)ħ𝟐 𝑴𝑱ħ 

 𝑳𝟏
�̂� 𝑳𝟏�̂� 𝑳𝟐

�̂� 𝑳𝟐�̂� 

𝒋𝟏(𝒋𝟏 + 𝟏)ħ𝟐 𝒎𝒋𝟏ħ 𝒋𝟐(𝒋𝟐 + 𝟏)ħ𝟐 𝒎𝒋𝟐ħ 

…(18.16) 
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The expanded expression for the function |𝑗1𝑗2𝐽𝑀𝐽 > in equation (18.16) is an eigen-

function of 𝑳𝟏
�̂�
 with eigen-value 𝒋𝟏(𝒋𝟏 + 𝟏)ħ𝟐 (considering only those terms that have 

the same value of 𝑗1 as in the function |𝑗1𝑗2𝐽𝑀𝐽 >) and so is the case with other operator 

𝑳𝟐
�̂�. Only terms with the same 𝑗2 value as in |𝑗1𝑗2𝐽𝑀𝐽 >are included in the sum. Hence 

the sum goes over only the 𝒎𝒋𝟏 and 𝒎𝒋𝟐 values (as 𝒎𝒋𝟏 and 𝒎𝒋𝟐 can respectively have 

(2𝑗1 + 1) and (2𝑗2 + 1) values). 

 

As a consequence of �̂� = 𝑳�̂� + 𝑳�̂�, we have 𝑳�̂� = 𝑳𝟏�̂� + 𝑳𝟐�̂� and therefore, their eigen-

values satisfy the relation  

𝑴𝑱 = 𝒎𝒋𝟏 + 𝒎𝒋𝟐                                  

 

To find the total-angular-momentum eigen-functions, one must evaluate the coefficients 

in (18.16). These (𝐶(𝑗1𝑗2𝐽𝑀𝐽; 𝑚𝑗1𝑚𝑗2)) are called Clebsch-Gordan or Wigner or vector 

addition coefficients.  

Thus, each total angular momentum eigen-function |𝑗1𝑗2𝐽𝑀𝐽 > is a linear combination of  

those product functions |𝑗1𝑚𝑗1 > |𝑗2𝑚𝑗2 > whose m values satisfy equation (18.17). 

 
𝑳�̂�𝒀 = 𝑴𝑱ħ𝒀                     𝑴𝑱 = −𝑱,……………… ,+𝑱 

𝑳𝟏�̂�𝒀 = 𝒎𝒋𝟏ħ𝒀                     𝒎𝒋𝟏 = −𝒋𝟏, ……………… ,+𝒋𝟏   

𝑳𝟐�̂�𝒀 = 𝒎𝒋𝟐ħ𝒀                     𝒎𝒋𝟐 = −𝒋𝟐, ……………… ,+𝒋𝟐   

𝑴𝑱 = 𝒎𝒋𝟏 + 𝒎𝒋𝟐  

 
 

 

 

 

 

 

 

…(18.17) 
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4. Summary  

1. The total angular momentum for the two electron system is taken as sum of angular 

momentum associated with the two electrons respectively. 

 Possibilities of combination can be 

I. Two Orbital angular momenta  �̂� = 𝐿1̂ + 𝐿2̂ 

II. Two Spin angular momenta    �̂� = 𝑆1̂ + 𝑆2̂ 

III. Orbital  and Spin angular momentum   𝐽 = 𝐿1̂ + 𝑆2̂ 

 The total angular momentum for the two electron system is taken as sum of 

angular momentum associated with the two electrons respectively. 

�̂� = 𝑳�̂� + 𝑳�̂� 

 Commutation Relations 

[�̂�𝟏, �̂�𝟐] = 𝟎  [𝑳�̂�, 𝑳�̂�] = 𝟎       [𝑳�̂�, 𝑳�̂�] = 𝟎       [𝑳�̂�, 𝑳�̂�] = 𝟎 

2. Eigen-value equation for the total angular momentum for the two electron system 

𝑳�̂�𝒀 = 𝑴𝑱ħ𝒀                     𝑴𝑱 = −𝑱,……………… ,+𝑱 

𝑳�̂�𝒀 = 𝑱(𝑱 + 𝟏)ħ𝟐𝒀           𝑱 = 𝟎, 𝟏 𝟐⁄ , 𝟏, 𝟑 𝟐⁄ , 𝟐….    

 𝑴𝑱 = 𝒎𝒋𝟏 + 𝒎𝒋𝟐 

 


