
CHAPTER 4.
CONTENT:

4.1 INTRODUCTION

4.2 DEFINITION OF A BINARY TREE &

ITS MEMORY REPRESENTATION

4.3 TRAVERSING A BINARY TREE

4.4 PREORDER

4.5 INORDER

4.6 POSTORDER TRAVERSAL

4.7 THREADED BINARY TREE.

4.8 GRAPH: INTRODUCTION

4.9 MEMORY REPRESENTATION OF GRAPHS

1

4.1 INTRODUCTION

•String, arrays, lists, stacks and Queues are the linear type

of data structure.

•Tree is nonlinear data structure. This structure is mainly

used to represent data containing a hierarchical

relationship between records, family trees and tables of

contents.

•First we discuss a special kind of tree, called a binary tree,

which can be easily maintained in the computer but may

seem to be very restrictive.
2

BINARY TREES:

• A binary tree T is defined as a finite set of elements, called nodes, such

that:

T is empty (Called the null tree or empty tree),

• T contains a distinguished node R, called the root of T, and the remaining

nodes of T from an ordered pair of disjoint binary trees T 1, and T 2.

• If T does contain a root R, then the two trees T1 and T2 are called,

respectively, the left and rig ht subtree s of R. If T1 is nonempty, then its

root is called the left s u c ce s s o r of R; similarly if T2 is nonempty, then

its root is called rig h t s u c ces s o r of R .
3

• A binary tree T is frequently presented by means of a diagram. Following diagram

represents a binary tree T as follows.

• T consist of 11 nodes, represented by the letters A through L , excluding I.

• The root of T is the node A at the top of the diagram.

• A left-downward slanted line from a node N indicates a left successor of N , and a right -

downward slanted line from N indicates a right successor on N

• Observe that:

• B is left successor and C is a right successor of the node A.

• The left subtree of the root A consist of the nodes B, D, E and F and the right subtree of A

consist of the nodes C, G, H, J, K and L.

• Any node N in a binary tree T has either 0, 1 or 2 successors. The nodes A, B, C and H

have two successors, the nodes E and J have only one successor, and the nodes D, F, G, L

and K have no successors. The nodes with no successors are called term inal node s .

• 4

Fig . binary tree structure
5

• The above definition of the binary tree T is recursive since T is defined in

terms of the binary subtrees T 1 and T 2. This means, in particular, that every

node N of T contains a left and a right subtree. Moreover, if N is a terminal

node, then both its left and right subtrees are empty.

• Binary trees T and T’ are said to be similar if they have the same

structure or, in other words, if they have the same shape. The trees are said to

be copie s if they are similar and if they have the same contents at

corresponding nodes.

6

4.2 BINARY TREE & IT’S MEMORY REPRESENTATION

• There are two ways of representing T in memory.

• A) Linked Representation of binary tree

• B) Sequential Representation of binary tree

7

A) LINKED REPRESENTATION OF BINARY TREE

• Consider a binary tree T. T will be maintained in memory by means of a

linked representation which uses three parallel arrays, INFO, LEFT and RIGHT

and a pointer ROOT as follows. In Binary Tree each node N of T will

correspond to a location k such that

• LEFT [k] contains the location of the left child of node N.

• INFO [k] contains the data at the node N.

• RIGHT [k] contains the location of right child of node N.

• Representation of a node:

8

REPRESENTATION OF A NODE:

• In this representation of binary tree root will contain the location of the

root R of T. If any one of the

• subtree is empty, then the corresponding pointer will contain the null value if

the tree T itself is empty, the ROOT will contain the null value.

9

EXAMPLE

• Consider the binary tree T in the figure. A schematic diagram of the linked list

representation of Tappears in the following figure. Observe that each node is

pictured with its three fields, and that the empty subtree is pictured by using x

for null entries.

10

LINKED REPRESENTATION OF THE BINARY TREE

11

REPRESENTATION OF BINARY TREE IN LINKED LIST IS AS
FOLLOWS

12

B) SEQUENTIAL REPRESENTATION OF BINARY TREE

• Let us consider that we have a tree T. let our tree T is a binary

tree that us complete binary tree. Then there is an efficient

way of representing T in the memory called the sequential

representation or array representation of T. This

representation uses only a linear array TREE as follows:

• The root N of T is stored in TREE [1].

• If a node occupies TREE [k] then its left child is stored in TREE

[2 * k] and its right child is stored into TREE [2 * k + 1].
13

FOR EXAMPLE:
CONSIDER THE FOLLOWING TREE:

14

ITS SEQUENTIAL REPRESENTATION IS AS FOLLOW:

15

BINARY SEARCH TREE OPERATIONS-

16

1. SEARCH OPERATION-

• Rules-

• For searching a given key in the BST,

• Compare the key with the value of root node.

• If the key is present at the root node, then return the root node.

• If the key is greater than the root node value, then recur for the root node’s

right subtree.

• If the key is smaller than the root node value, then recur for the root node’s

left subtree.

17

EXAMPLE-
CONSIDER KEY = 45 HAS TO BE SEARCHED IN THE GIVEN
BST-

• We start our search from the root node 25.

• As 45 > 25, so we search in 25’s right subtree.

• As 45 < 50, so we search in 50’s left subtree.

• As 45 > 35, so we search in 35’s right subtree.

• As 45 > 44, so we search in 44’s right subtree but

44 has no subtrees.

• So, we conclude that 45 is not present in the above

BST.

18

INSERTION OPERATION

• Rules-

• The insertion of a new key always takes place as the child of some leaf node.

• For finding out the suitable leaf node,

• Search the key to be inserted from the root node till some leaf node is

reached.

• Once a leaf node is reached, insert the key as child of that leaf node.

19

EXAMPLE-
CONSIDER THE FOLLOWING EXAMPLE WHERE KEY = 40

IS INSERTED IN THE GIVEN BST-

• We start searching for value 40 from the root

node 100.

• As 40 < 100, so we search in 100’s left subtree.

• As 40 > 20, so we search in 20’s right subtree.

• As 40 > 30, so we add 40 to 30’s right subtree.

20

3. DELETION OPERATION-

• Deletion Operation is performed to delete a particular element from the

Binary Search Tree

• Case-01: Deletion Of A Node Having No Child (Leaf Node)-

• Case-02: Deletion Of A Node Having Only One Child-

• Case-03: Deletion Of A Node Having two Child-

21

CASE-01: DELETION OF A NODE HAVING NO CHILD
(LEAF NODE)-

• Just remove / disconnect the leaf

node that is to deleted from the tree.

• Example-

• Consider the following example

where node with value = 20 is

deleted from the BST-

22

CASE-02: DELETION OF A NODE HAVING ONLY ONE
CHILD-

• Just make the child of the deleting

node, the child of its grandparent.

• Example-

• Consider the following example

where node with value = 30 is

deleted from the BST-

23

CASE-03: DELETION OF A NODE HAVING TWO CHILD-

• Just make the child of the deleting node, the child of its

grandparent.

• Example-

• This is the most complex case. To solve it, let us see one useful BST

property first. We are going to use the idea, that the same set of

values may be represented as different binary-search trees. For

example those BSTs:
24

EXAMPLE. REMOVE 12 FROM A BST.

25

Find minimum element in the right subtree of

the node to be removed. In current example it is

19.

Replace 12 with 19. Notice, that only

values are replaced, not nodes. Now

we have two nodes with the same

value.

Remove 19 from the left subtree.

26

PREORDER

•A pre order traversal prints the contents of a sorted tree,

in pre order. In other words, the contents of the root node

are printed first, followed by left subtree and finally the

right subtree. So in Figure a pre order traversal would

result in the following string: FCADJHIK

27

PreOrder (T)

If T < > Null

then print (T.data)

else print(‘empty tree’)

If T.lp < > null

then PreOrder(T.lp)

If T.rp < > null

then preorder (T.rp)

end.

28

INORDER

• An in order traversal prints the contents of a sorted tree, in order. In other

words, the lowest in value first, and then increasing in value as it traverses the

tree. The order of a traversal would be 'a' to 'z' if the tree uses strings or

characters, and would be increasing numerically from 0 if the tree contains

numerical values. So in Figure 1.1, an in order traversal would result in the

following string: ACDFHIJK.

29

InOrder (T)

If T < > null

print (‘empty tree’)

If T.lp < > null

then InOrder(T.lp)

print (T.data)

If T.rp < > null

then InOrder (T.lp)

end.

30

POSTORDER

• A post order traversal prints the contents of a sorted tree, in post order. In

other words, the contents of the left subtree are printed first, followed by right

subtree and finally the root node. So in Figure 1.1, a post order traversal

would result in the following string: ADCIHKJF.

31

PostOrder (T)

If T = null

then print (‘empty tree’)

If T.lp < > null

then PostOrder(T.lp)

If T.rp < > null

then PostOrder(T.lp)

Print(T.data)

end.

32

4.4 THREADED BINARY TREE.
TREE TRAVERSALS (INORDER)

• Unlike linear data structures (Array, Linked List,

Queues, Stacks, etc) which have only one logical

way to traverse them, trees can be traversed in

different ways. Following are the generally used

ways for traversing trees.

• (a) Inorder (Left, Root, Right) : 4 2 5 1 3

Inorder Traversal (Practice):
Algorithm Inorder(tree)
1. Traverse the left subtree, i.e.,

call Inorder(left-subtree)
2. Visit the root.
3. Traverse the right subtree, i.e.,

call Inorder(right-subtree)

Uses of Inorder
In case of binary search trees (BST), Inorder traversal

gives nodes in non-decreasing order. To get nodes of

BST in non-increasing order, a variation of Inorder

traversal where Inorder traversal s reversed can be

used.

Example: Inorder traversal for the above-given figure is

4 2 5 1 3.

33

https://practice.geeksforgeeks.org/problems/inorder-traversal/1

• The idea of threaded binary trees is to make inorder

traversal faster and do it without stack and without

recursion. A binary tree is made threaded by making all

right child pointers that would normally be NULL point to

the inorder successor of the node (if it exists).

• There are two types of threaded binary trees.

S ing le T h readed : Where a NULL right pointers is made

to point to the inorder successor (if successor exists)

• Do ub le T h readed : Where both left and right NULL

pointers are made to point to inorder predecessor and

inorder successor respectively. The predecessor threads are

useful for reverse inorder traversal and postorder traversal.

• The threads are also useful for fast accessing ancestors of a

node.

• Following diagram shows an example Single Threaded

Binary Tree. The dotted lines represent threads. 34

https://www.geeksforgeeks.org/wp-content/uploads/gq/2014/07/threadedBT.png

WHAT IS GRAPH

• A graph is a pictorial representation of a set of objects where some pairs of

objects are connected by links. The interconnected objects are represented by

points termed as vertices, and the links that connect the vertices are

called edges.

• Formally, a graph is a pair of sets (V, E), where V is the set of vertices and Eis

the set of edges, connecting the pairs of vertices. Take a look at the following

graph −

• In the givan graph,

• V = {a, b, c, d, e}

• E = {ab, ac, bd, cd, de} 35

36

GRAPH DATA STRUCTURE

•Mathematical graphs can be represented in data structure. We

can represent a graph using an array of vertices and a two-

dimensional array of edges. Before we proceed further, let's

familiarize ourselves with some important terms −

• Vertex − Each node of the graph is represented as a vertex. In the

following example, the labeled circle represents vertices. Thus, A to

G are vertices. We can represent them using an array as shown in

the following image. Here A can be identified by index 0. B can

be identified using index 1 and so on.

37

• Edge − Edge represents a path between two vertices or a line between two

vertices. In the following example, the lines from A to B, B to C, and so on

represents edges. We can use a two-dimensional array to represent an array

as shown in the following image. Here AB can be represented as 1 at row 0,

column 1, BC as 1 at row 1, column 2 and so on, keeping other combinations

as 0.

• Adjacency − Two node or vertices are adjacent if they are connected to each

other through an edge. In the following example, B is adjacent to A, C is

adjacent to B, and so on.

• Path − Path represents a sequence of edges between the two vertices. In the

following example, ABCD represents a path from A to D.

38

• Following two are the most commonly used representations of a graph.

1. Adjacency Matrix

2. Adjacency List

There are other representations also like, Incidence Matrix and Incidence List.

The choice of the graph representation is situation specific. It totally depends

on the type of operations to be performed and ease of use.

• Adjacency Matrix:

Adjacency Matrix is a 2D array of size V x V where V is the number of

vertices in a graph. Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates

that there is an edge from vertex i to vertex j. Adjacency matrix for

undirected graph is always symmetric. Adjacency Matrix is also used to

represent weighted graphs. If adj[i][j] = w, then there is an edge from vertex i

to vertex j with weight w.
39

40

The adjacency matrix for the above example graph is

41

