Lecture 3: Pairwise Sequence Alignment Multiple Sequence Alignment

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka

Pairwise Sequence Alignment

 Determining Significance of an Alignment

Significance of Alignment

- Determine probability of alignment occurring at random
 - Sequence 1: length m
 - Sequence 2: length n
- Random sequences:
 - Alignment follows Gumbel Extreme Value Distribution

Gumbel Extreme Value Distribution

http://roso.epfl.ch/mbi/papers/discretechoice/node11.html

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka

Probability of Alignment Score

 Expected # of alignments with score at least S (E-value):

$E = Kmn e^{-\lambda S}$

- m,n: Lengths of sequences
- $-K,\lambda$: natural scales
 - Search space size
 - Scoring system

Converting to Bit Scores

A raw score can be normalized to a bit score using the formula:

• The E-value corresponding to a given bit score can then be calculated as:

$$E = mn 2^{-S}$$

P-Value

 P-Value: probability of obtaining a given score at random

$P = 1 - e^{-E}$

Which is approximately **e**^{-E}

Significance of Ungapped Alignments

- PAM matrices are 10 * log₁₀x
- Converting to log₂x gives bits of information
- Converting to log_ex gives nats of information

Quick Calculation

• If bit scoring system is used, significance cutoff is:

 $\log_2(mn)$

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka

Example (p110)

- 2 Sequences, each 250 amino acids long
- Significance:

 $-\log_2(250 * 250) = 16$ bits

Example (p110)

- Using PAM250, the following alignment is found:
- F W L E V E G N S M T A P T G
- F W L D V Q G D S M T A P A G

Example (p110)

- Using PAM250 (p82), the score is calculated:
- F W L E V E G N S M T A P T G
- F W L D V Q G D S M T A P A G
- S = 9 + 17 + 6 + 3 + 4 + 2 + 5 + 2 + 2 + 6 + 3 + 2 + 6 + 1 + 5 = 73

Significance Example

- S is in 10 * log₁₀x -- convert to a bit score:
- •
- $S = 10 \log_{10} x$
- $S/10 = \log_{10} x$
- $S/10 = \log_{10} x * (\log_2 10/\log_2 10)$
- $S/10 * \log_2 10 = \log_{10} x / \log_2 10$
- $S/10 * \log_2 10 = \log_2 x$
- 1/3 S ~ log₂x
- •
- S' ~ 1/3S

Significance Example

- S' = 1/3S = 1/3 * 73 = 24.333 bits
- Significance cutoff = 16 bits
- Therefore, this alignment is significant

Estimation of E and P

- For PAM250, K = 0.09; λ = 0.229
- Using equations 30 and 31 (normalize to mean of 0; $\lambda = 1$):

 $-S' = 0.229 * 73 - \ln 0.09 * 250 * 250$

-S' = 16.72 - 8.63 = 8.09 bits

•
$$P(S' \ge 8.09) = 1 - e^{(-e^{-8.09})} = 3.1* 10^{-4}$$

Significance of Gapped Alignments

- Gapped alignments use same statistics
- λ and K cannot be easily estimated
- Empirical estimations and gap scores determined by looking at random alignments

Pairwise Sequence Alignment Programs

- needle
 - Global
 Needleman/Wunsch alignment
- Blast 2 Sequences
 - NCBI
 - word based
 sequence alignment

- water
 - Local
 Smith/Waterman alignment

- LALIGN

 FASTA package
 - Mult. Local alignments

Various Sequence Alignments

Wise2 -- Genomic to protein

<u>Sim4</u> -- Aligns expressed DNA to genomic sequence

spidey -- aligns mRNAs to genomic sequence

est2genome -- aligns ESTs to genomic sequence

Amino Acid Sequence Alignment

- No exact match/mismatch scores
- Match state score calculated by table
 lookup
- Lookup table is mutation matrix

PAM250 Lookup

	С	S	Т	P	A	G	N	D	E	þ	н	R	К	М	Ι	L	v	E	Y	พ	
C.	12																				Ċ
S.	Q	4																			
Т	- 2	1	3																		T
Ŧ	+3	1	O	¢																	P
A	$\{\mathbf{Z}\}$	1			2																А.
G	43	1	0	+1	1	<u> </u>						<u></u>									G
И	Ŧ,	1	Ū.	-1	Φ	Q.	2														M
Р.	t te	Q	9	- 1	Q	1	4	4													Π
Щ.	т н			+ +	Ч	Ų	+		4												+
	1	H H	++		Ч	+ 1	H			Ĥ											4
브	I S	- <u>+</u>	- 1	Ų	-1	- 4	4	<u>ц</u>	1	4	D										뵨
F.	- 4	U	++	Ų	-4	- 3	U	- 1	- 1	4	4	9									К
М	+2.3	-2	걸음	+2	문문	+3	<u>2</u>	28. 1910 - 1910	-2	23	-2	<u>.</u> О	0	6							М
	$\left \frac{1}{2} \right $	H 1	0	-2	- I.	+3	F2	21	-2	32)	-2	± 2	± 2	2	5						1
F .	-6	23	÷2)	153	:23	: 1 4::	H8:	÷4:	-3	H2:	-2	533	:†?::	14	- 21	6					E :
W :	± 2	∃:1:	: <u>0</u> :	<u>: </u>	::: <u>0</u>	<u>::::::</u>	+2 :	<u>+2</u>	-2	± 2 :	$[\pm 2]$	323	: <u>-</u> 2:	(2)	:4	::2:	: 4:				: ¥::
F	-4	-3	-3	- 5	-4	-5	-4	-6	-5	-5	-2	-4	-5	0	1	2	-1	9			F
Y	0	-3	-3	-5	-3	-5	-2	-4	-4	-4	0	-4	-4	-2	-1	-1	-2	7	10		Y
N	- 8	-2		-6	-6		- 4	-7	-7	- 5		2	-3	-4	-5	-2	-6	0	0	17	N
	С	S	Т	P	A	G	N	D	E	<u>0</u>	H	R	К	<u>M</u>	I	L	V	F	Y	W	

Affine Gap Penalties

- Gap Open
- Gap Extension
- Maximum score matrix determined by maximum of three matrices:
 - Match matrix (match residues in A & B)
 - Insertion matrix (gap in sequence A)
 - Deletion matrix (gap in sequence B)

Dynamic Programming with Affine Gap

 $M_{i,j} = MAX\{ M_{i-1, j-1} + s(x_i, y_i), \\ I_{i-1, j-1} + s(x_i, y_i), \\ D_{i-1, j-1} + s(x_i, y_i) \}$

$$\label{eq:linear} \begin{split} I_{i,j} &= MAX\{ \ M_{i-1,\,j} - g, \ // \ Opening \ new \ gap, \ g = gap \ open \ penalty; \\ I_{i-1,\,j} - r \} \ // \ Extending \ existing \ gap, \ r = gap \ extend \ penalty \end{split}$$

$$\begin{split} D_{i,j} &= MAX\{M_{i,j-1} - g, \quad // \text{ Opening new gap}; \\ D_{i,j-1} - r\} \quad // \text{ Extending existing gap} \end{split}$$

 $V_{i,j} = MAX \{M_{i,j}, I_{i,j}, D_{i,j}\}$

Sequence File Formats

- We have been using DNA and amino acid sequences already
- What is the typical format for these?
- ANSWER: Many different options

 Consider two most popular for now

Standard Codes (IUPAC)

A = adenineS = G CC = cytosineW = A TG = guanineB = G T CT = thymineD = G A TU = uracilH = A C TR = G A (purine) V = G C AY = T C (pyrimidine) K = G T (keto) N = A G C T (any)M = A C (amino)

Standard IUPAC Codes

- A Ala Alanine
- R Arg Arginine
- N Asn Asparagine
- D Asp Aspartic acid
- C Cys Cysteine
- Q Gln Glutamine
- E Glu Glutamic acid
- G Gly Glycine
- H His Histidine
- I lle Isoleucine
- L Leu Leucine
- K Lys Lysine
- M Met Methionine

- F Phe Phenylalanine
- P Pro Proline
- S Ser Serine
- T Thr Threonine
- W Trp Tryptophan
- Y Tyr Tyrosine
- V Val Valine
- B Asx Aspartic acid or Asparagine
- Z Glx Glutamine or Glutamic acid
- X Xaa or Xxx Any amino acid

Fasta File Format

- most basic and widespread sequence format
- first line descriptor begins with a '>' character
- proceeding lines contain sequence
- useful for sequence analysis programs

Fasta File Format

• Example Fasta Sequence:

>gi|27819608|ref|NP_776342.1| hemoglobin, beta [beta globin] [Bos taurus] MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPKVKAHGKKVLDSF SNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARNFGKEFTPVLQADFQKVVAGVANAL AHRYH

- first line begins with '>', followed by gi, -- next field surrounded by '|' is GenBank identifier
- the keyword 'ref' -- field will be the reference for the version of this sequence.
- final field is the description

Fasta File Format

• Example Fasta Sequence:

>gi|27819608|ref|NP_776342.1| hemoglobin, beta [beta globin] [Bos taurus] MLTAEEKAAVTAFWGKVKVDEVGGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPKVKAHGKKVLDSF SNGMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARNFGKEFTPVLQADFQKVVAGVANAL AHRYH

- nearly all sequence based programs treat anything following the '>' as a comment
- a few sequence analysis programs expect sequences to be in a strict fasta format

GenBank

- GenBank: National Center for Biotechnology Information's (NCBI) nucleic acid and protein sequence database
- widely used source of biological sequence data
- format contains information about the sequence: literature references, functions, features, etc.

GenBank

- information organized into fields, each with an identifier, justified to the farthest left column.
- Some identifiers have additional subfields.
- sequence data lies between the identifier ORIGIN and the '//' which signals the end of a GenBank record.

GenBank Record

• View NCBI GenBank Record:

- NP_776342

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka

Eric C. Rouchka, D.Sc. eric.rouchka@uofl.edu

http://kbrin.a-bldg.louisville.edu/CECS694/

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka

- Similar regions conserved across organisms
 - Same or similar function
 - Same or similar structure

- Simultaneous alignment of similar regions yields:
 - regions subject to mutation
 - regions of conservation
 - mutations or rearrangements causing change in conformation or function

- New sequence can be aligned with known sequences
 - Yields insight into structure and function
- Multiple alignment can detect important features or motifs

- GOAL: Take 3 or more sequences, align so greatest number of characters are in the same column
- Difficulty: introduction of multiple sequences increases combination of matches, mismatches, gaps
Example Multiple Alignment

📑 Untitled - AlignX 📃 🗖 🗙										
<u>P</u> roject <u>E</u> dit	<u>V</u> iew <u>A</u> lign Analyses Assemble Tools <u>W</u> indow <u>H</u> elp									
🖻 🗐	*1 📩 🖆 🐮 🖾 🔂 🎝 🕅									
Active Pane: 📴 🔄 🔛 🔲 🖉 🖉 🖄 🐇 🐇										
	1 1 10 20 30									
NONAME	1 <mark>VSLTC</mark> L-VKGFYPSD-IAVEWESNG									
NONAME#2	1 <mark>VTISC</mark> TGT <mark>S</mark> SNIG <mark>S</mark> <mark>I</mark> T <mark>V</mark> N <mark>W</mark> YQ <mark>Q</mark> L <mark>PG</mark>									
NONAME#8	1 <mark>VTISC</mark> TGS <mark>S</mark> SNIG <mark>A</mark> G-NH <mark>V</mark> KWYQ <mark>Q</mark> L <mark>PG</mark>									
NONAME#3	1 <mark>Lrlsc</mark> s-s <mark>s</mark> g f if <mark>s</mark> s-ya <mark>m</mark> y <mark>w</mark> vr <mark>q</mark> apg									
NONAME#4	1 <mark>LSLTC</mark> T- <mark>VS</mark> GTSFDD-YYST <mark>W</mark> VR <mark>Q</mark> P <mark>PG</mark>									
NONAME#5	1 PE <mark>VTC</mark> VV <mark>V</mark> DVSHEDPQ <mark>V</mark> KFN <mark>W</mark> YVDG									
NONAME#6	1 A <mark>TL</mark> VCL- <mark>IS</mark> DFYPGA-VTVAWKADS									
NONAME#7	1 AA <mark>L</mark> G <mark>C</mark> L- <mark>V</mark> KD <mark>Y</mark> FPEP- <mark>V</mark> T <mark>V</mark> SWNSG									
Consensus	1 VTLSCT VS F S V V W Q PG									
Ready	positives: 59.3% identity: 7.4% al //									

• Example alignment of 8 IG sequences.

Approaches to Multiple Alignment

- Dynamic Programming
- Progressive Alignment
- Iterative Alignment
- Statistical Modeling

Dynamic Programming Approach

- Dynamic programming with two sequences
 - Relatively easy to code
 - Guaranteed to obtain optimal alignment
- Can this be extended to multiple sequences?

Dynamic Programming With 3 Sequences

- Consider the amino acid sequences VSNS, SNA, AS
- Put one sequence per axis (x, y, z)
- Three dimensional structure results

Dynamic Programming With 3 Sequences

Possibilities:

- All three match;
- A & B match with gap in C
- A & C match with gap in B
- B & C match with gap in A
- A with gap in B & C
- B with gap in A & C
- C with gap in A & B

Dynamic Programming With 3 Sequences

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka

Multiple Dynamic Programming complexity

- Each sequence has length of n
 - 2 sequences: O(n²)
 - 3 sequences: O(n³)
 - -4 sequence: O(n⁴)
 - -N sequences: $O(n^N)$
- Quickly becomes impractical

Reduction of space and time

- Carrillo and Lipman: multiple sequence alignment space bounded by pairwise alignments
- Projections of these alignments lead to a bounded

Volume Limits

sequence A

Reduction of space and time

- Step 1: Find pairwise alignment for sequences.
- Step 2: Trial msa produced by predicting a phylogenetic tree for the sequences
- Step 3: Sequences multiply aligned in the order of their relationship on the tree

Reduction of space and time

- Heuristic alignment not guaranteed to be optimal
- Alignment provides a limit to the volume within which optimal alignments are likely to be found

MSA

- MSA: Developed by Lipman, 1989
- Incorporates extended dynamic programming

Scoring of msa's

- MSA uses Sum of Pairs (SP)
 - Scores of pair-wise alignments in each column added together
 - Columns can be weighted to reduce influence of closely related sequences
 - Weight is determined by distance in phylogenetic tree

Sum of Pairs Method

- Given: 4 sequences
 ECSQ
 SNSG
 SWKN
 SCSN
- There are 6 pairwise alignments:
- 1-2; 1-3; 1-4; 2-3; 2-4; 3-4

Sum of Pairs Method

ECSQ
 SNSG
 SWKN
 SCSN

•	1-2	E-S	0	C-N	-4	S-S	2	Q-G	-1
•	1-3	E-S	0	C-W	-8	S-K	0	Q-N	1
•	1-4	E-S	0	C-C	12	S-S	2	Q-N	1
•	2-3	S-S	2	N-W	-4	S-K	0	G-N	0
•	2-4	S-S	2	N-C	-4	S-S	2	G-N	0
•	3-4	S-S	2	W-C	-8	K-S	0	N-N	2
•			6		-16		6		3

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka

Summary of MSA

- 1. Calculate all pairwise alignment scores
- 2. Use the scores to predict tree
- 3. Calcuate pair weights based on the tree
- 4. Produce a heuristic msa based on the tree
- 5. Calculate the maximum weight for each sequence pair
- 6. Determine the spatial positions that must be calculated to obtain the optimal alignment
- 7. Perform the optimal alignment
- Report the weight found compared to the maximum weight previously found

Progressive Alignments

- MSA program is limited in size
- Progressive alignments take advantage of Dynamic Programming

Progressive Alignments

- Align most related sequences
- Add on less related sequences to initial alignment

- Perform pairwise alignments of all sequences
- Use alignment scores to produce
 phylogenetic tree
- Align sequences sequentially, guided by the tree

- Enhanced Dynamic Programming used to align sequences
- Genetic distance determined by number of mismatches divided by number of matches

- Gaps are added to an existing profile in progressive methods
- CLUSTALW incorporates a statistical model in order to place gaps where they are most likely to occur

http://www.ebi.ac.uk/clustalw/

PILEUP

- Part of GCG package
- Sequences initially aligned using Needleman-Wunsch
- Scores used to produce tree using unweighted pair group method (UPGMA)

Shortcoming of Progressive Approach

- Dependence upon initial alignments
 - Ok if sequences are similar
 - Errors in alignment propagated if not similar
- Choosing scoring systems that fits all sequences simultaneously

Iterative Methods

- Begin by using an initial alignment
- Alignment is repeatedly refined

MultAlign

- Pairwise scores recalculated during progressive alignment
- Tree is recalculated
- Alignment is refined

PRRP

- Initial pairwise alignment predicts tree
- Tree produces weights
- Locally aligned regions considered to produce new alignment and tree
- Continue until alignments converge

DIALIGN

- Pairs of sequences aligned to locate ungapped aligned regions
- Diagonals of various lengths identified
- Collection of weighted diagonals provide alignment

Genetic Algorithms

- Generate as many different msas by rearrangements simulating gaps and recombination events
- SAGA (Serial Alignment by Genetic Algorithm) is one approach

 1) Sequences (up to 20) written in row, allowing for overlaps of random length – ends padded with gaps (100 or so alignments)

- 2) initial alignments scored using sum of pairs
 - Standard amino acid scoring matrices
 - gap open, gap extension penalties
- 3) Initial alignments are replaced
 - Half are chosen to proceed unchanged (Natural selection)
 - Half proceed with introduction of mutations
 - Chosen by best scoring alignments

- 4) MUTATION: gaps inserted sequences and rearranged
- sequences subject to mutation split into two sets based on estimated phylogenetic tree
- gaps of random lengths inserted into random positions in the alignment

- Mutations:
- XXXXXXXX
- XXXXXXXX
- XXXXXXXX
- XXXXXXXX
- XXXXXXXX

XXX----XXX---XX XXX----XXX---XX X---XXX----XXXX X---XXXX----XXXX X---XXXXX

- 5) Recombination of two parents to produce next generation alignment
- 6) Next generation alignment evaluated – 100 to 1000 generations simulated (steps 2-5)
- 7) Begin again with initial alignment

Simulated Annealing

- Obtain a higher-scoring multiple alignment
- Rearranges current alignment using probabalistic approach to identify changes that increase alignment score

Simulated Annealing

http://www.cs.berkeley.edu/~amd/CS294S97/notes/day15/day15.html

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka
Simulated Annealing

- Drawback: can get caught up in locally, but not globally optimal solutions
- MSASA: Multiple Sequence Alignment by Simulated Annealing
- Gibbs Sampling

Group Approach

- Sequences aligned into similar groups
- Consensus of group is created
- Alignments between groups is formed
- EXAMPLES: PIMA, MULTAL

Tree Approach

- Tree created
- Two closest sequences aligned
- Consensus aligned with next best sequence or group of sequences
- Proceed until all sequences are aligned

Tree Approach to msa

www.sonoma.edu/users/r/rank/ research/evolhost3.html

CECS 694-02 Introduction to Bioinformatics University of Louisville Spring 2004 Dr. Eric Rouchka

Tree Approach to msa

- PILEUP, CLUSTALW and ALIGN
- TREEALIGN rearranges the tree as sequences are added, to produce a maximum parsimony tree (fewest evolutionary changes)

Profile Analysis

- Create multiple sequence alignment
- Select conserved regions
- Create a matrix to store information about alignment
 - One row for each position in alignment
 - one column for each residue; gap open; gap extend

Profile Analysis

- Profile can be used to search target sequence or database for occurrence
- Drawback: profile is skewed towards training data