
9

VB.NET 1. VB.NET – Overview

Visual Basic .NET (VB.NET) is an object-oriented computer programming language

implemented on the .NET Framework. Although it is an evolution of classic Visual Basic

language, it is not backwards-compatible with VB6, and any code written in the old version

does not compile under VB.NET.

Like all other .NET languages, VB.NET has complete support for object-oriented concepts.

Everything in VB.NET is an object, including all of the primitive types (Short, Integer, Long,

String, Boolean, etc.) and user-defined types, events, and even assemblies. All objects

inherits from the base class Object.

VB.NET is implemented by Microsoft's .NET framework. Therefore, it has full access to all the

libraries in the .Net Framework. It's also possible to run VB.NET programs on Mono, the open-

source alternative to .NET, not only under Windows, but even Linux or Mac OSX.

The following reasons make VB.Net a widely used professional language:

 Modern, general purpose.

 Object oriented.

 Component oriented.

 Easy to learn.

 Structured language.

 It produces efficient programs.

 It can be compiled on a variety of computer platforms.

 Part of .Net Framework.

 Strong Programming Features VB.Net

VB.Net has numerous strong programming features that make it endearing to multitude of

programmers worldwide. Let us mention some of these features:

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

10

VB.NET

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

 Conditional Compilation

 Simple Multithreading

11

VB.NET

2. VB.NET – Environment Setup

In this chapter, we will discuss the tools available for creating VB.Net applications.

We have already mentioned that VB.Net is part of .Net framework and used for writing .Net

applications. Therefore before discussing the available tools for running a VB.Net program,

let us understand how VB.Net relates to the .Net framework.

 The .Net Framework

The .Net framework is a revolutionary platform that helps you to write the following types of

applications:

 Windows applications

 Web applications

 Web services

The .Net framework applications are multi-platform applications. The framework has been

designed in such a way that it can be used from any of the following languages: Visual Basic,

C#, C++, Jscript, and COBOL, etc.

All these languages can access the framework as well as communicate with each other.

The .Net framework consists of an enormous library of codes used by the client languages

like VB.Net. These languages use object-oriented methodology.

Following are some of the components of the .Net framework:

 Common Language Runtime (CLR)

 The .Net Framework Class Library

 Common Language Specification

 Common Type System

 Metadata and Assemblies

 Windows Forms

 ASP.Net and ASP.Net AJAX

 ADO.Net

12

VB.NET

 Windows Workflow Foundation (WF)

 Windows Presentation Foundation

 Windows Communication Foundation (WCF)

 LINQ

For the jobs each of these components perform, please see ASP.Net - Introduction, and for

details of each component, please consult Microsoft's documentation.

 Integrated Development Environment (IDE) For VB.Net

Microsoft provides the following development tools for VB.Net programming:

 Visual Studio 2010 (VS)

 Visual Basic 2010 Express (VBE)

 Visual Web Developer

The last two are free. Using these tools, you can write all kinds of VB.Net programs from

simple command-line applications to more complex applications. Visual Basic Express and

Visual Web Developer Express edition are trimmed down versions of Visual Studio and has

the same look and feel. They retain most features of Visual Studio. In this tutorial, we have

used Visual Basic 2010 Express and Visual Web Developer (for the web programming

chapter).

You can download it from here. It gets automatically installed in your machine. Please note

that you need an active internet connection for installing the express edition.

 Writing VB.Net Programs on Linux or Mac OS

Although the .NET Framework runs on the Windows operating system, there are some

alternative versions that work on other operating systems. Mono is an open-source version

of the .NET Framework which includes a Visual Basic compiler and runs on several operating

systems, including various flavors of Linux and Mac OS. The most recent version is VB 2012.

The stated purpose of Mono is not only to be able to run Microsoft .NET applications cross-

platform, but also to bring better development tools to Linux developers. Mono can be run on

many operating systems including Android, BSD, iOS, Linux, OS X, Windows, Solaris and

UNIX.

http://localhost/asp.net/asp.net_introduction.htm
http://www.microsoft.com/visualstudio/eng/downloads

13

VB.NET

Imports System

Module Module1

'This program will display Hello World

Sub Main()

Console.WriteLine("Hello World")

Console.ReadKey()

End Sub

End Module

Hello, World!

Before we study basic building blocks of the VB.Net programming language, let us look a bare

minimum VB.Net program structure so that we can take it as a reference in upcoming

chapters.

 VB.Net Hello World Example

A VB.Net program basically consists of the following parts:

 Namespace declaration

 A class or module

 One or more procedures

 Variables

 The Main procedure

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World":

When the above code is compiled and executed, it produces the following result:

3. VB.NET – Program Structure

14

VB.NET

Let us look various parts of the above program:

 The first line of the program Imports System is used to include the System

namespace in the program.

 The next line has a Module declaration, the module Module1. VB.Net is completely

object oriented, so every program must contain a module of a class that contains the

data and procedures that your program uses.

 Classes or Modules generally would contain more than one procedure. Procedures

contain the executable code, or in other words, they define the behavior of the class.

A procedure could be any of the following:

o Function

o Sub

o Operator

o Get

o Set

o AddHandler

o RemoveHandler

o RaiseEvent

 The next line ('This program) will be ignored by the compiler and it has been put to

add additional comments in the program.

 The next line defines the Main procedure, which is the entry point for all VB.Net

programs. The Main procedure states what the module or class will do when executed.

 The Main procedure specifies its behavior with the statement

Console.WriteLine ("Hello World") WriteLine is a method of the Console class

defined in the System namespace. This statement causes the message "Hello, World!"

to be displayed on the screen.

 The last line Console.ReadKey() is for the VS.NET Users. This will prevent the screen

from running and closing quickly when the program is launched from Visual

Studio .NET.

15

VB.NET

 Compile & Execute VB.Net Program

If you are using Visual Studio.Net IDE, take the following steps:

 Start Visual Studio.

 On the menu bar, choose File  New  Project.

 Choose Visual Basic from templates

 Choose Console Application.

 Specify a name and location for your project using the Browse button, and then choose

the OK button.

 The new project appears in Solution Explorer.

 Write code in the Code Editor.

 Click the Run button or the F5 key to run the project. A Command Prompt window

appears that contains the line Hello World.

You can compile a VB.Net program by using the command line instead of the Visual Studio

IDE:

 Open a text editor and add the above mentioned code.

 Save the file as helloworld.vb

 Open the command prompt tool and go to the directory where you saved the file.

 Type vbc helloworld.vb and press enter to compile your code.

 If there are no errors in your code the command prompt will take you to the next line

and would generate helloworld.exe executable file.

 Next, type helloworld to execute your program.

 You will be able to see "Hello World" printed on the screen.

16

VB.NET

Imports System

Public Class Rectangle

Private length As Double

Private width As Double

'Public methods

Public Sub AcceptDetails()

VB.Net is an object-oriented programming language. In Object-Oriented Programming

methodology, a program consists of various objects that interact with each other by means

of actions. The actions that an object may take are called methods. Objects of the same kind

are said to have the same type or, more often, are said to be in the same class.

When we consider a VB.Net program, it can be defined as a collection of objects that

communicate via invoking each other's methods. Let us now briefly look into what do class,

object, methods, and instant variables mean.

 Object - Objects have states and behaviors. Example: A dog has states - color, name,

breed as well as behaviors - wagging, barking, eating, etc. An object is an instance of

a class.

 Class - A class can be defined as a template/blueprint that describes the

behaviors/states that object of its type support.

 Methods - A method is basically a behavior. A class can contain many methods. It is

in methods where the logics are written, data is manipulated and all the actions are

executed.

 Instant Variables - Each object has its unique set of instant variables. An object's

state is created by the values assigned to these instant variables.

 A Rectangle Class in VB.Net

For example, let us consider a Rectangle object. It has attributes like length and width.

Depending upon the design, it may need ways for accepting the values of these attributes,

calculating area and displaying details.

Let us look at an implementation of a Rectangle class and discuss VB.Net basic syntax on the

basis of our observations in it:

4. VB.NET – Basic Syntax

17

VB.NET

Length: 4.5

Width: 3.5

Area: 15.75

Dim r As New Rectangle()

When the above code is compiled and executed, it produces the following result:

In previous chapter, we created a Visual Basic module that held the code. Sub Main indicates

the entry point of VB.Net program. Here, we are using Class that contains both code and data.

You use classes to create objects. For example, in the code, r is a Rectangle object.

An object is an instance of a class:

A class may have members that can be accessible from outside class, if so specified. Data

members are called fields and procedure members are called methods.

length = 4.5

width = 3.5

End Sub

Public Function GetArea() As Double

GetArea = length * width

End Function

Public Sub Display()

Console.WriteLine("Length: {0}", length)

Console.WriteLine("Width: {0}", width)

Console.WriteLine("Area: {0}", GetArea())

End Sub

Shared Sub Main()

Dim r As New Rectangle()

r.Acceptdetails()

r.Display()

Console.ReadLine()

End Sub

End Class

18

VB.NET

Shared Sub Main()

Dim r As New Rectangle()

r.Acceptdetails()

r.Display()

Console.ReadLine()

End Sub

Shared methods or static methods can be invoked without creating an object of the class.

Instance methods are invoked through an object of the class:

 Identifiers

An identifier is a name used to identify a class, variable, function, or any other user-defined

item. The basic rules for naming classes in VB.Net are as follows:

 A name must begin with a letter that could be followed by a sequence of letters, digits

(0 - 9) or underscore. The first character in an identifier cannot be a digit.

 It must not contain any embedded space or symbol like ? - +! @ # % ^ & * () []

{ } . ; : " ' / and \. However, an underscore (_) can be used.

 It should not be a reserved keyword.

 VB.Net Keywords

The following table lists the VB.Net reserved keywords:

AddHandler AddressOf Alias And AndAlso As Boolean

ByRef Byte ByVal Call Case Catch CBool

CByte CChar CDate CDec CDbl Char CInt

Class CLng CObj Const Continue CSByte CShort

CSng CStr CType CUInt CULng CUShort Date

Decimal Declare Default Delegate Dim DirectCast Do

19

VB.NET

Double Each Else ElseIf End End If Enum

Erase Error Event Exit False Finally For

Friend

Function

Get

GetType

GetXML

Namespace

Global

GoTo

Handles If Implements Imports In Inherits Integer

Interface Is IsNot Let Lib Like Long

Loop Me Mod Module MustInherit MustOverride MyBase

MyClass Namespace Narrowing New Next Not Nothing

Not

Inheritable

Not

Overridable

Object

Of

On

Operator

Option

Optional Or OrElse Overloads Overridable Overrides ParamArray

Partial Private Property Protected Public RaiseEvent ReadOnly

ReDim

REM

Remove

Handler

Resume

Return

SByte

Select

Set Shadows Shared Short Single Static Step

Stop String Structure Sub SyncLock Then Throw

To True Try TryCast TypeOf UInteger While

Widening With WithEvents WriteOnly Xor

20

VB.NET

Data types refer to an extensive system used for declaring variables or functions of different

types. The type of a variable determines how much space it occupies in storage and how the

bit pattern stored is interpreted.

 Data Types Available in VB.Net

VB.Net provides a wide range of data types. The following table shows all the data types

available:

Data Type Storage Allocation Value Range

Boolean

Depends on

implementing

platform

True or False

Byte 1 byte 0 through 255 (unsigned)

Char 2 bytes 0 through 65535 (unsigned)

Date

8 bytes
0:00:00 (midnight) on January 1, 0001 through

11:59:59 PM on December 31, 9999

Decimal

16 bytes

0 through +/-

79,228,162,514,264,337,593,543,950,335

(+/-7.9...E+28) with no decimal point; 0

through +/-

7.9228162514264337593543950335 with 28

places to the right of the decimal

Double

8 bytes

-1.79769313486231570E+308 through -

4.94065645841246544E-324, for negative

values

4.94065645841246544E-324 through

1.79769313486231570E+308, for positive

values

5. VB.NET – Data Types

21

VB.NET

Integer

4 bytes
-2,147,483,648 through 2,147,483,647

(signed)

Long

8 bytes
-9,223,372,036,854,775,808 through

9,223,372,036,854,775,807(signed)

Object

4 bytes on 32-bit

platform

8 bytes on 64-bit

platform

Any type can be stored in a variable of type

Object

SByte 1 byte -128 through 127 (signed)

Short 2 bytes -32,768 through 32,767 (signed)

Single

4 bytes

-3.4028235E+38 through -1.401298E-45 for

negative values;

1.401298E-45 through 3.4028235E+38 for

positive values

String

Depends on

implementing

platform

0 to approximately 2 billion Unicode characters

UInteger 4 bytes 0 through 4,294,967,295 (unsigned)

ULong

8 bytes
0 through 18,446,744,073,709,551,615

(unsigned)

User-Defined

Depends on

implementing

platform

Each member of the structure has a range

determined by its data type and independent of

the ranges of the other members

UShort 2 bytes 0 through 65,535 (unsigned)

22

VB.NET

 Example

The following example demonstrates use of some of the types:

Module DataTypes

Sub Main()

Dim b As Byte

Dim n As Integer

Dim si As Single

Dim d As Double

Dim da As Date

Dim c As Char

Dim s As String

Dim bl As Boolean

b = 1

n = 1234567

si = 0.12345678901234566

d = 0.12345678901234566

da = Today

c = "U"c

s = "Me"

If ScriptEngine = "VB" Then

bl = True

Else

bl = False

End If

If bl Then

'the oath taking

Console.Write(c & " and," & s & vbCrLf)

Console.WriteLine("declaring on the day of: {0}", da)

Console.WriteLine("We will learn VB.Net seriously")

Console.WriteLine("Lets see what happens to the floating point

variables:")

Console.WriteLine("The Single: {0}, The Double: {1}", si, d)

End If

23

VB.NET

U and, Me

declaring on the day of: 12/4/2012 12:00:00 PM

We will learn VB.Net seriously

Lets see what happens to the floating point variables:

The Single:0.1234568, The Double: 0.123456789012346

When the above code is compiled and executed, it produces the following result:

 The Type Conversion Functions in VB.Net

VB.Net provides the following in-line type conversion functions:

S.N Functions & Description

1

CBool(expression)

Converts the expression to Boolean data type.

2

CByte(expression)

Converts the expression to Byte data type.

3

CChar(expression)

Converts the expression to Char data type.

4

CDate(expression)

Converts the expression to Date data type

5

CDbl(expression)

Converts the expression to Double data type.

Console.ReadKey()

End Sub

End Module

24

VB.NET

6

CDec(expression)

Converts the expression to Decimal data type.

7

CInt(expression)

Converts the expression to Integer data type.

8

CLng(expression)

Converts the expression to Long data type.

9

CObj(expression)

Converts the expression to Object type.

10

CSByte(expression)

Converts the expression to SByte data type.

11

CShort(expression)

Converts the expression to Short data type.

12

CSng(expression)

Converts the expression to Single data type.

13

CStr(expression)

Converts the expression to String data type.

14

CUInt(expression)

Converts the expression to UInt data type.

15

CULng(expression)

Converts the expression to ULng data type.

25

VB.NET

Module DataTypes

Sub Main()

Dim n As Integer

Dim da As Date

Dim bl As Boolean = True

n = 1234567

da = Today

Console.WriteLine(bl)

Console.WriteLine(CSByte(bl))

Console.WriteLine(CStr(bl))

Console.WriteLine(CStr(da))

Console.WriteLine(CChar(CChar(CStr(n))))

Console.WriteLine(CChar(CStr(da)))

Console.ReadKey()

End Sub

End Module

True

-1

True

12/4/2012

1

1

16

CUShort(expression)

Converts the expression to UShort data type.

 Example

The following example demonstrates some of these functions:

When the above code is compiled and executed, it produces the following result:

26

VB.NET

[< attributelist>] [accessmodifier] [[Shared] [Shadows] | [Static]]

[ReadOnly] Dim [WithEvents] variablelist

6. VB.NET – Variables

A variable is nothing but a name given to a storage area that our programs can manipulate.

Each variable in VB.Net has a specific type, which determines the size and layout of the

variable's memory; the range of values that can be stored within that memory; and the set

of operations that can be applied to the variable.

We have already discussed various data types. The basic value types provided in VB.Net can

be categorized as:

Type Example

Integral types SByte, Byte, Short, UShort, Integer, UInteger, Long, ULong and

Char

Floating point types Single and Double

Decimal types Decimal

Boolean types True or False values, as assigned

Date types Date

VB.Net also allows defining other value types of variable like Enum and reference types of

variables like Class. We will discuss date types and Classes in subsequent chapters.

 Variable Declaration in VB.Net

The Dim statement is used for variable declaration and storage allocation for one or more

variables. The Dim statement is used at module, class, structure, procedure, or block level.

Syntax for variable declaration in VB.Net is:

Where,

 attributelist is a list of attributes that apply to the variable. Optional.

27

VB.NET

variablename[([boundslist])] [As [New] datatype] [= initializer]

Dim StudentID As Integer

Dim StudentName As String

Dim Salary As Double

Dim count1, count2 As Integer

Dim status As Boolean

Dim exitButton As New System.Windows.Forms.Button

 accessmodifier defines the access levels of the variables, it has values as - Public,

Protected, Friend, Protected Friend and Private. Optional.

 Shared declares a shared variable, which is not associated with any specific instance

of a class or structure, rather available to all the instances of the class or structure.

Optional.

 Shadows indicate that the variable re-declares and hides an identically named

element, or set of overloaded elements, in a base class. Optional.

 Static indicates that the variable will retain its value, even when the after termination

of the procedure in which it is declared. Optional.

 ReadOnly means the variable can be read, but not written. Optional.

 WithEvents specifies that the variable is used to respond to events raised by the

instance assigned to the variable. Optional.

 Variablelist provides the list of variables declared.

Each variable in the variable list has the following syntax and parts:

Where,

 variablename: is the name of the variable

 boundslist: optional. It provides list of bounds of each dimension of an array variable.

 New: optional. It creates a new instance of the class when the Dim statement runs.

 datatype: Required if Option Strict is On. It specifies the data type of the variable.

 initializer: Optional if New is not specified. Expression that is evaluated and assigned

to the variable when it is created.

Some valid variable declarations along with their definition are shown here:

28

VB.NET

variable_name = value;

Dim pi As Double

pi = 3.14159

Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Module variablesNdataypes

Sub Main()

Dim a As Short

Dim b As Integer

Dim c As Double

a = 10

b = 20

c = a + b

Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

Console.ReadLine()

End Sub

End Module

 Variable Initialization in VB.Net

Variables are initialized (assigned a value) with an equal sign followed by a constant

expression. The general form of initialization is:

for example,

You can initialize a variable at the time of declaration as follows:

 Example

Try the following example which makes use of various types of variables:

Dim lastTime, nextTime As Date

29

VB.NET

a = 10, b = 20, c = 30

Dim message As String

message = Console.ReadLine

Module variablesNdataypes

Sub Main()

Dim message As String

Console.Write("Enter message: ")

message = Console.ReadLine

Console.WriteLine()

Console.WriteLine("Your Message: {0}", message)

Console.ReadLine()

End Sub

End Module

Enter message: Hello World

Your Message: Hello World

When the above code is compiled and executed, it produces the following result:

 Accepting Values from User

The Console class in the System namespace provides a function ReadLine for accepting input

from the user and store it into a variable. For example,

The following example demonstrates it:

When the above code is compiled and executed, it produces the following result (assume the

user inputs Hello World):

Lvalues and Rvalues
There are two kinds of expressions:

 lvalue : An expression that is an lvalue may appear as either the left-hand or right-

hand side of an assignment.

 rvalue : An expression that is an rvalue may appear on the right- but not left-hand

side of an assignment.

30

VB.NET

Dim g As Integer = 20

20 = g

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric

literals are rvalues and so may not be assigned and can not appear on the left-hand side.

Following is a valid statement:

But following is not a valid statement and would generate compile-time error:

