SQL | Arithmetic Operators
Arithmetic Operators are:
+ [Addition]
- [Subtraction]
/ [Division]
* [Multiplication]
% [Modulus]
Addition (+) :
It is used to perform addition operation on the data items, items include either single column or multiple columns.
Implementation:
SELECT employee_id, employee_name, salary, salary + 100
AS "salary + 100" FROM addition;

Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY+100

	1
	alex
	25000
	25100

	2
	rr
	55000
	55100

	3
	jpm
	52000
	52100

	4
	ggshmr
	12312
	12412

Here we have done addition of 100 to each Employee’s salary i.e, addition operation on single column.

Let’s perform addition of 2 columns:
SELECT employee_id, employee_name, salary, salary + employee_id
 AS "salary + employee_id" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY+EMPLOYEE_ID

	1
	alex
	25000
	25001

	2
	rr
	55000
	55002

	3
	jpm
	52000
	52003

	4
	ggshmr
	12312
	12316

Here we have done addition of 2 columns with each other i.e, each employee’s employee_id is added with its salary.

Subtraction (-) :
It is use to perform subtraction operation on the data items, items include either single column or multiple columns.
Implementation:
SELECT employee_id, employee_name, salary, salary - 100
 AS "salary - 100" FROM subtraction;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY-100

	12
	Finch
	15000
	14900

	22
	Peter
	25000
	24900

	32
	Warner
	5600
	5500

	42
	Watson
	90000
	89900

Here we have done subtraction of 100 to each Employee’s salary i.e, subtraction operation on single column.

Let’s perform subtraction of 2 columns:
SELECT employee_id, employee_name, salary, salary - employee_id
 AS "salary - employee_id" FROM subtraction;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY – EMPLOYEE_ID

	12
	Finch
	15000
	14988

	22
	Peter
	25000
	24978

	32
	Warner
	5600
	5568

	42
	Watson
	90000
	89958

Here we have done subtraction of 2 columns with each other i.e, each employee’s employee_id is subtracted from its salary.

Multiplication (*) :
It is use to perform multiplication of data items.
Implementation:
SELECT employee_id, employee_name, salary, salary * 100
 AS "salary * 100" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY * 100

	1
	Finch
	25000
	2500000

	2
	Peter
	55000
	5500000

	3
	Warner
	52000
	5200000

	4
	Watson
	12312
	1231200

Here we have done multiplication of 100 to each Employee’s salary i.e, multiplication operation on single column.
Let’s perform multiplication of 2 columns:

SELECT employee_id, employee_name, salary, salary * employee_id
 AS "salary * employee_id" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY * EMPLOYEE_ID

	1
	Finch
	25000
	25000

	2
	Peter
	55000
	110000

	3
	Warner
	52000
	156000

	4
	Watson
	12312
	49248

Here we have done multiplication of 2 columns with each other i.e, each employee’s employee_id is multiplied with its salary.

Modulus (%) :
It is use to get remainder when one data is divided by another.
Implementation:
SELECT employee_id, employee_name, salary, salary % 25000
 AS "salary % 25000" FROM addition;

Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY % 25000

	1
	Finch
	25000
	0

	2
	Peter
	55000
	5000

	3
	Warner
	52000
	2000

	4
	Watson
	12312
	12312

Here we have done modulus of 100 to each Employee’s salary i.e, modulus operation on single column.

Let’s perform modulus operation between 2 columns:
SELECT employee_id, employee_name, salary, salary % employee_id
 AS "salary % employee_id" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY % EMPLOYEE_ID

	1
	Finch
	25000
	0

	2
	Peter
	55000
	0

	3
	Warner
	52000
	1

	4
	Watson
	12312
	0

Here we have done modulus of 2 columns with each other i.e, each employee’s salary is divided with its id and corresponding remainder is shown.
Basically, modulus is use to check whether a number is Even or Odd. Suppose a given number if divided by 2 and gives 1 as remainder, then it is an odd number or if on dividing by 2 and gives 0 as remainder, then it is an even number.
Concept of NULL :
If we perform any arithmetic operation on NULL, then answer is always null.
Implementation:
SELECT employee_id, employee_name, salary, type, type + 100
 AS "type+100" FROM addition;

Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	TYPE
	TYPE + 100

	1
	Finch
	25000
	NULL
	NULL

	2
	Peter
	55000
	NULL
	NULL

	3
	Warner
	52000
	NULL
	NULL

	4
	Watson
	12312
	NULL
	NULL

Here output always came null, since performing any operation on null will always result in a null value.

SQL | BETWEEN & IN Operator
BETWEEN
The SQL BETWEEN condition allows you to easily test if an expression is within a range of values (inclusive). The values can be text, date, or numbers. It can be used in a SELECT, INSERT, UPDATE, or DELETE statement. The SQL BETWEEN Condition will return the records where expression is within the range of value1 and value2.

Syntax:
SELECT column_name(s)
FROM table_name
WHERE column_name BETWEEN value1 AND value2;
Examples:
Consider the following Employee Table,
[image: https://media.geeksforgeeks.org/wp-content/uploads/Capture113.png]

Queries
· Using BETWEEN with Numeric Values:
List all the Employee Fname, Lname who is having salary between 30000 and 45000.
· SELECT Fname, Lname
· FROM Employee
· WHERE Salary BETWEEN 30000 AND 45000;
Output:
[image: https://media.geeksforgeeks.org/wp-content/uploads/Capture26.png]

· Using BETWEEN with Date Values:
Find all the Employee having Date of Birth Between 01-01-1985 and 12-12-1990.
· SELECT Fname, Lname
· FROM Employee
· where DOB BETWEEN '1985-01-01' AND '1990-12-30';
Output:
[image: https://media.geeksforgeeks.org/wp-content/uploads/Capture27.png]

· Using NOT operator with BETWEEN
Find all the Employee name whose salary is not in the range of 30000 and 45000.
· SELECT Fname, Lname
· FROM Emplyoee
· WHERE Salary NOT BETWEEN 30000 AND 45000;
Output:
[image: https://media.geeksforgeeks.org/wp-content/uploads/Capture114.png]

IN
IN operator allows you to easily test if the expression matches any value in the list of values. It is used to remove the need of multiple OR condition in SELECT, INSERT, UPDATE or DELETE. You can also use NOT IN to exclude the rows in your list.
Syntax:
SELECT column_name(s)
FROM table_name
WHERE column_name IN (list_of_values);
Queries
· Find the Fname, Lname of the Employees who have Salary equal to 30000, 40000 or 25000.
· SELECT Fname, Lname
· FROM Employee WHERE Salary IN (30000, 40000, 25000);
Output:
[image: https://media.geeksforgeeks.org/wp-content/uploads/Capture28.png]

· Find the Fname, Lname of all the Employee who have Salary not equal to 25000 or 30000.
· SELECT Fname, Lname
· FROM Employee WHERE Salary NOT IN (25000, 30000);
Output:
[image: https://media.geeksforgeeks.org/wp-content/uploads/Capture29.png]

SQL | Arithmetic Operators
Prerequisite: Basic Select statement, Insert into clause, Sql Create Clause, SQL Aliases
We can use various Arithmetic Operators on the data stored in the tables.
Arithmetic Operators are:

+ [Addition]
- [Subtraction]
/ [Division]
* [Multiplication]
% [Modulus]
Addition (+) :
It is used to perform addition operation on the data items, items include either single column or multiple columns.
Implementation:
SELECT employee_id, employee_name, salary, salary + 100
 AS "salary + 100" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY+100

	1
	alex
	25000
	25100

	2
	rr
	55000
	55100

	3
	jpm
	52000
	52100

	4
	ggshmr
	12312
	12412

Here we have done addition of 100 to each Employee’s salary i.e, addition operation on single column.

Let’s perform addition of 2 columns:
SELECT employee_id, employee_name, salary, salary + employee_id
 AS "salary + employee_id" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY+EMPLOYEE_ID

	1
	alex
	25000
	25001

	2
	rr
	55000
	55002

	3
	jpm
	52000
	52003

	4
	ggshmr
	12312
	12316

Here we have done addition of 2 columns with each other i.e, each employee’s employee_id is added with its salary.
Subtraction (-) :
It is use to perform subtraction operation on the data items, items include either single column or multiple columns.
Implementation:
SELECT employee_id, employee_name, salary, salary - 100
 AS "salary - 100" FROM subtraction;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY-100

	12
	Finch
	15000
	14900

	22
	Peter
	25000
	24900

	32
	Warner
	5600
	5500

	42
	Watson
	90000
	89900

Here we have done subtraction of 100 to each Employee’s salary i.e, subtraction operation on single column.

Let’s perform subtraction of 2 columns:
SELECT employee_id, employee_name, salary, salary - employee_id
 AS "salary - employee_id" FROM subtraction;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY – EMPLOYEE_ID

	12
	Finch
	15000
	14988

	22
	Peter
	25000
	24978

	32
	Warner
	5600
	5568

	42
	Watson
	90000
	89958

Here we have done subtraction of 2 columns with each other i.e, each employee’s employee_id is subtracted from its salary.
Division (/) : For Division refer this link- Division in SQL
Multiplication (*) :
It is use to perform multiplication of data items.
Implementation:
SELECT employee_id, employee_name, salary, salary * 100
 AS "salary * 100" FROM addition;

Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY * 100

	1
	Finch
	25000
	2500000

	2
	Peter
	55000
	5500000

	3
	Warner
	52000
	5200000

	4
	Watson
	12312
	1231200

Here we have done multiplication of 100 to each Employee’s salary i.e, multiplication operation on single column.
Let’s perform multiplication of 2 columns:

SELECT employee_id, employee_name, salary, salary * employee_id
 AS "salary * employee_id" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY * EMPLOYEE_ID

	1
	Finch
	25000
	25000

	2
	Peter
	55000
	110000

	3
	Warner
	52000
	156000

	4
	Watson
	12312
	49248

Here we have done multiplication of 2 columns with each other i.e, each employee’s employee_id is multiplied with its salary.
Modulus (%) :
It is use to get remainder when one data is divided by another.
Implementation:
SELECT employee_id, employee_name, salary, salary % 25000
 AS "salary % 25000" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY % 25000

	1
	Finch
	25000
	0

	2
	Peter
	55000
	5000

	3
	Warner
	52000
	2000

	4
	Watson
	12312
	12312

Here we have done modulus of 100 to each Employee’s salary i.e, modulus operation on single column.

Let’s perform modulus operation between 2 columns:
SELECT employee_id, employee_name, salary, salary % employee_id
 AS "salary % employee_id" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	SALARY % EMPLOYEE_ID

	1
	Finch
	25000
	0

	2
	Peter
	55000
	0

	3
	Warner
	52000
	1

	4
	Watson
	12312
	0

Here we have done modulus of 2 columns with each other i.e, each employee’s salary is divided with its id and corresponding remainder is shown.
Basically, modulus is use to check whether a number is Even or Odd. Suppose a given number if divided by 2 and gives 1 as remainder, then it is an odd number or if on dividing by 2 and gives 0 as remainder, then it is an even number.
Concept of NULL :
If we perform any arithmetic operation on NULL, then answer is always null.
Implementation:
SELECT employee_id, employee_name, salary, type, type + 100
 AS "type+100" FROM addition;
Output:
	EMPLOYEE_ID
	EMPLOYEE_NAME
	SALARY
	TYPE
	TYPE + 100

	1
	Finch
	25000
	NULL
	NULL

	2
	Peter
	55000
	NULL
	NULL

	3
	Warner
	52000
	NULL
	NULL

	4
	Watson
	12312
	NULL
	NULL

Here output always came null, since performing any operation on null will always result in a null value.
Note: Make sure that NULL is unavailable, unassigned, unknown. Null is not same as blank space or zero.
To get in depth understanding of NULL, refer THIS link.

SQL AND, OR, NOT – SQL Logical Operators

SQL provides logical operators which helps in filtering the result set based on some condition. SQL logical operators that we will be discussing are AND, OR and NOT. These three are the most commonly used logical operators in SQL queries.
1. SQL AND Operator
SQL AND operator are used when we want to combine multiple conditions as part of the WHERE clause. The result set will be filtered based on the satisfaction of both the condition. So, if both the conditions are true then only the result will be filtered. To combine multiple conditions, we can use more than one AND as part of the WHERE clause.

1.1) SQL single AND operator example
SQL AND operator syntax is:

SELECT column(s) FROM table_name WHERE condition1 AND condition2;
As mentioned in the syntax above for combining two conditions we can use one AND operator.
We will now try to understand one AND operator through some example.

Let’s consider the following Student table for example purpose.
	RollNo
	StudentName
	StudentGender
	StudentAge
	StudentPercent

	1
	George
	M
	14
	85

	2
	Monica
	F
	13
	88

	3
	Jessica
	F
	14
	84

	4
	Tom
	M
	13
	78

Scenario: Get the percentage of students whose age is more than 12 years and gender is female.

SELECT StudentPercent FROM Student WHERE StudentAge>12 AND StudentGender = "F";
Output:
	StudentPercent

	88

	84

In the example above, we have used one AND operator to combine two conditions, StudentAge is greater than 12 and StudentGender is equal to “F”.

Let’s try to see an example for multiple AND operator.
1.2) SQL multiple AND operator example

SELECT column(s) FROM table_name WHERE condition1 AND condition2 AND condition3…AND conditionN;
As mentioned in the syntax above for combining more than two conditions we can use more than one AND operator.
We will now try to understand more than one AND operator through some example. Let’s consider the earlier defined Student table for example purpose.
Scenario: Get the percentage of students whose age is more than 12 years and gender are female and the percentage is more than 80.

SELECT StudentPercent FROM Student WHERE StudentAge>12 AND StudentGender = "F" AND StudentPercent>80;
Output:
	StudentPercent

	85

	88

	84

In the example above, we have used one AND operator to combine three conditions, StudentAge is greater than 12, StudentGender is equal to “F” and StudentPercent is greater than 80.
2. SQL OR Operator
OR operator is used when we want to combine multiple conditions as part of the WHERE clause. The result set will be filtered based on satisfaction of at least one of the conditions. So, if at least one of the conditions are true than only the result will be filtered. To combine multiple conditions, we can use more than one OR as part of the WHERE clause.
2.1) SQL single OR operator example
Syntax:

SELECT column(s) FROM table_name WHERE condition1 OR condition2;
As mentioned in the syntax above for combining two conditions we can use one OR operator.
We will now try to understand one OR operator through some example. Let’s reuse the earlier defined Student table for example purpose.
Scenario: Get the percentage of students whose age is more than 12 years or gender are female.
Query:

SELECT StudentPercent FROM Student WHERE StudentAge>12 OR StudentGender = "F";
Output:
	StudentPercent

	85

	88

	84

	78

In the example above, we have used one OR operator to combine two conditions, StudentAge is greater than 12 and StudentGender is equal to “F”.
Let’s try to understand for multiple OR operator.

2.2) SQL multiple OR operator example
Syntax:

SELECT column(s) FROM table_name WHERE condition1 OR condition2 OR condition3 ... OR conditionN;
As mentioned in the syntax above for combining more than two conditions we can use more than one OR operator.
We will now try to understand more than one OR operator through some example.
Scenario: Get the percentage of students whose age is more than 12 years or gender is female or percentage is more than 80.
Query:

SELECT StudentPercent FROM Student WHERE StudentAge>12 OR StudentGender = "F" OR StudentPercent>80;
In the example above, we have used one OR operator to combine three conditions, StudentAge is greater than 12, StudentGender is equal to “F” and StudentPercent is greater than 80.
3. SQL NOT Operator
SQL NOT operator is used when we want to filter result set when the condition is not satisfied in the WHERE clause.
Let’s try to understand NOT operator in detail with some examples.
3.1) SQL NOT operator example
Syntax:

SELECT column(s) FROM table_name WHERE NOT condition;
As mentioned in the syntax above we use NOT operator along with WHERE clause. We will now try to understand NOT operator through some example.
Scenario: Get the percentage of students whose gender is not female.
Query:

SELECT StudentPercent FROM Student WHERE NOT StudentGender = "F";

Output:
	StudentPercent

	85

	78

In the example above, we have used NOT operator to identify if the gender of the student is not female.
.

SQL Comparison operator
Comparison operator
A comparison (or relational) operator is a mathematical symbol which is used to compare two values.
Comparison operators are used in conditions that compares one expression with another. The result of a comparison can be TRUE, FALSE, or UNKNOWN (an operator that has one or two NULL expressions returns UNKNOWN).
The following table describes different types of comparison operators -
	Operator
	Description
	Operates on

	=
	Equal to.
	Any compatible data types

	>
	Greater than.
	Any compatible data types

	<
	Less than.
	Any compatible data types

	>=
	Greater than equal to.
	Any compatible data types

	<=
	Less than equal to.
	Any compatible data types

	<>
	Not equal to.
	Any compatible data types

Syntax :
SELECT[column_name| * |expression]<comparison operator>
[column_name | * | expression]
FROM <table_name>
WHERE <expression>[comparison operator]<expression>;
Parameters:
	Name
	Description

	column_name
	Name of the column of a table.

	*
	Indicates all the columns of a table.

	expression
	Expression made up of a single constant, variable, scalar function, or column name and can also be the pieces of a SQL query that compare values against other values or perform arithmetic calculations.

	table_name
	Name of the table.

	comparison operator
	Equal to (=), not equal to(<>), greater than(>), less than(<), greater than or equal to (>=), less than or equal to (<=).

Contents:
· Equal to Operator
· Greater than Operator
· Less than Operator
· Greater than or equal to Operator
· Less than or equal to Operator
· Not equal to Operator
Example: SQL Comparison operator
To get a comparison between two numbers from the DUAL table, the following SQL statement can be used :
SELECT 15>14 FROM dual;
Copy

SQL Equal to (=) operator
The equal to operator is used for equality test within two numbers or expressions.
Example:
Sample table: agents

To get data of all columns from the 'agents' table with the following condition -
1. 'commission' is equal to .15,

the following SQL statement can be used :
SQL Code:
SELECT * FROM agents
WHERE commission = 0.15;

Output:

AGENT_ AGENT_NAME WORKING_AREA COMMISSION PHONE_NO COUNTRY
------ ------------------------------ ----------------- ---------- --------------- --------
A007 Ramasundar Bangalore .15 077-25814763
A011 Ravi Kumar Bangalore .15 077-45625874
A006 McDen London .15 078-22255588
A004 Ivan Torento .15 008-22544166

SQL Greater than (>) operator
The greater than operator is used to test whether an expression (or number) is greater than another one.
Example:
To get data of all columns from the 'agents' table with the following condition -
1. 'commission' is greater than .14,

the following SQL statement can be used :
SQL Code:
SELECT *
FROM agents
WHERE commission> 0.14;
Copy
Output:
AGENT_ AGENT_NAME WORKING_AREA COMMISSION PHONE_NO COUNTRY
------ -------------- ----------------------------------- ---------- --------------- -------
A007 Ramasundar Bangalore .15 077-25814763
A011 Ravi Kumar Bangalore .15 077-45625874
A006 McDen London .15 078-22255588
A004 Ivan Torento .15 008-22544166

SQL Less than (<) operator
The less than operator is used to test whether an expression (or number) is less than another one.
Example:
To get data of all columns from the 'agents' table with the following condition -
1. 'commission' is less than .12,

the following SQL statement can be used :
SQL Code:
SELECT *
FROM agents
WHERE commission < 0.12;
Copy
Output:
AGENT_ AGENT_NAME WORKING_AREA COMMISSION PHONE_NO COUNTRY
------ -------------- ----------------------------------- ---------- --------------- ---------
A009 Benjamin Hampshair .11 008-22536178
A002 Mukesh Mumbai .11 029-12358964

SQL Greater than or equal to (>=) operator
The greater than equal to operator is used to test whether an expression (or number) is either greater than or equal to another one.
Example:
To get data of all columns from the 'agents' table with the following condition -
1. 'commission' is greater than or equal to .14,

the following SQL statement can be used :
SQL Code:
SELECT *
FROM agents
WHERE commission >= 0.14;
Copy
Output:
AGENT_ AGENT_NAME WORKING_AREA COMMISSION PHONE_NO COUNTRY
------ --------------- ----------------------------------- ---------- --------------- --------
A001 Subbarao Bangalore .14 077-12346674
A007 Ramasundar Bangalore .15 077-25814763
A011 Ravi Kumar Bangalore .15 077-45625874
A010 Santakumar Chennai .14 007-22388644
A006 McDen London .15 078-22255588
A004 Ivan Torento .15 008-22544166
SQL Less than or equal to (<=) operator
The less than equal to operator is used to test whether an expression (or number) is either less than or equal to another one.
Example:
To get data of all columns from the 'agents' table with the following condition -
1. commission is less than or equal to .12,

the following SQL statement can be used :
SQL Code:
SELECT *
FROM agents
WHERE commission <= 0.12;
Copy

Output:
AGENT_ AGENT_NAME WORKING_AREA COMMISSION PHONE_NO COUNTRY
------ --------------- ---------------------------------- ---------- --------------- ---------
A009 Benjamin Hampshair .11 008-22536178
A008 Alford New York .12 044-25874365
A012 Lucida San Jose .12 044-52981425
A002 Mukesh Mumbai .11 029-12358964
SQL Not equal to (<>) operator
The not equal to operator is used for inequality test between two numbers or expression.
Example:
To get data of all columns from the 'agents' table with the following condition -
1. commission is not equal to .15,
the following SQL statement can be used :
SQL Code:
SELECT *
FROM agents
WHERE commission <> 0.15;
Copy
Output:
AGENT_ AGENT_NAME WORKING_AREA COMMISSION PHONE_NO COUNTRY
------ ------------- ----------------------------------- ---------- --------------- --------
A003 Alex London .13 075-12458969
A001 Subbarao Bangalore .14 077-12346674
A009 Benjamin Hampshair .11 008-22536178
A008 Alford New York .12 044-25874365
A010 Santakumar Chennai .14 007-22388644
A012 Lucida San Jose .12 044-52981425
A005 Anderson Brisban .13 045-21447739
A002 Mukesh Mumbai .11 029-12358964

[bookmark: _GoBack]

image5.png
Fname |Lname
John Smith
Franklin | Wong
Ahmad | Jabbar
Alicia Zeala

image6.png
Fname |Lname

Franklin [Wong

Joyce English

Ramesh [Narayan

James |Borg

Jennifer | Wallace

image1.png
Fname [Lname SSN |Salary |DOB

John Smith 123456789 | 30000 (1988-05-02
Franklin | Wong 333445555 | 40000 |1986-01-02
Joyce English |453453453 (80000 |1977-12-08
Ramesh [Narayan (666884444 | 38000 (1987-03-05
James |Borg 888665555 | 55000 |1982-10-10
Jennifer |Wallace |987654321 | 43000 (1985-08-07
Ahmad |Jabbar |987987987 | 25000 [1990-06-28
Alicia Zeala 999887777 | 25000 |1980-09-14

image2.png
Fname |Lname

John Smith

Franklin [Wong

Ramesh [Narayan

Jennifer | Wallace

image3.png
Fname |Lname

John Smith

Franklin [Wong

Ramesh [Narayan

Jennifer | Wallace

Ahmad | Jabbar

image4.png
Fname |Lname
Joyce English
James |Borg
Ahmad | Jabbar
Alicia Zeala

