
Introduction to SQL

SQL is a standard language for accessing and manipulating databases.

What is SQL?
· SQL stands for Structured Query Language
· SQL lets you access and manipulate databases
· SQL became a standard of the American National Standards Institute (ANSI) in 1986, and of the International Organization for Standardization (ISO) in 1987

What Can SQL do?
· SQL can execute queries against a database
· SQL can retrieve data from a database
· SQL can insert records in a database
· SQL can update records in a database
· SQL can delete records from a database
· SQL can create new databases
· SQL can create new tables in a database
· SQL can create stored procedures in a database
· SQL can create views in a database
· SQL can set permissions on tables, procedures, and views

SQL is a Standard - BUT....
Although SQL is an ANSI/ISO standard, there are different versions of the SQL language.
However, to be compliant with the ANSI standard, they all support at least the major commands (such as SELECT, UPDATE, DELETE, INSERT, WHERE) in a similar manner.
Note: Most of the SQL database programs also have their own proprietary extensions in addition to the SQL standard!

Using SQL in Your Web Site
To build a web site that shows data from a database, you will need:
· An RDBMS database program (i.e. MS Access, SQL Server, MySQL)
· To use a server-side scripting language, like PHP or ASP
· To use SQL to get the data you want
· To use HTML / CSS to style the page

Now let's see what the MySQL's data types are. You can use any of them depending on your need. You should always try to not to underestimate or overestimate potential range of data when creating a database.
DATA TYPES
Data types define the nature of the data that can be stored in a particular column of a table
MySQL has 3 main categories of data types namely
1. Numeric,
2. Text
3. Date/time.
Numeric Data types
Numeric data types are used to store numeric values. It is very important to make sure range of your data is between lower and upper boundaries of numeric data types.
	TINYINT()
	-128 to 127 normal
0 to 255 UNSIGNED.

	SMALLINT()
	-32768 to 32767 normal
0 to 65535 UNSIGNED.

	MEDIUMINT()
	-8388608 to 8388607 normal
0 to 16777215 UNSIGNED.

	INT()
	-2147483648 to 2147483647 normal
0 to 4294967295 UNSIGNED.

	BIGINT()
	-9223372036854775808 to 9223372036854775807 normal
0 to 18446744073709551615 UNSIGNED.

	FLOAT
	A small approximate number with a floating decimal point.

	DOUBLE(,)
	A large number with a floating decimal point.

	DECIMAL(,)
	A DOUBLE stored as a string , allowing for a fixed decimal point. Choice for storing currency values.

Text Data Types
As data type category name implies these are used to store text values. Always make sure you length of your textual data do not exceed maximum lengths.
	CHAR()
	A fixed section from 0 to 255 characters long.

	VARCHAR()
	A variable section from 0 to 255 characters long.

	TINYTEXT
	A string with a maximum length of 255 characters.

	TEXT
	A string with a maximum length of 65535 characters.

	BLOB
	A string with a maximum length of 65535 characters.

	MEDIUMTEXT
	A string with a maximum length of 16777215 characters.

	MEDIUMBLOB
	A string with a maximum length of 16777215 characters.

	LONGTEXT
	A string with a maximum length of 4294967295 characters.

	LONGBLOB
	A string with a maximum length of 4294967295 characters.

Date / Time
	 DATE
	YYYY-MM-DD

	DATETIME
	YYYY-MM-DD HH:MM:SS

	TIMESTAMP
	YYYYMMDDHHMMSS

	TIME
	HH:MM:SS

Apart from above there are some other data types in MySQL.
	ENUM
	To store text value chosen from a list of predefined text values

	SET
	This is also used for storing text values chosen from a list of predefined text values. It can have multiple values.

	BOOL
	Synonym for TINYINT(1), used to store Boolean values

	BINARY
	Similar to CHAR, difference is texts are stored in binary format.

	VARBINARY
	Similar to VARCHAR, difference is texts are stored in binary format.

Creating Tables MySQL

[image: MySQL Create Database, Tables, Data Types]
Tables can be created using CREATE TABLE statement and it actually has the following syntax.
CREATE TABLE [IF NOT EXISTS] `TableName` (`fieldname` dataType [optional parameters]) ENGINE = storage Engine;
HERE
· "CREATE TABLE" is the one responsible for the creation of the table in the database.
· "[IF NOT EXISTS]" is optional and only create the table if no matching table name is found.
· "`fieldName`" is the name of the field and "data Type" defines the nature of the data to be stored in the field.
· "[optional parameters]" additional information about a field such as " AUTO_INCREMENT" , NOT NULL etc

Create Table Example:-
CREATE TABLE IF NOT EXISTS `MyFlixDB`.`Members` (
 `membership_number` INT AUTOINCREMENT ,
 `full_names` VARCHAR(150) NOT NULL ,
 `gender` VARCHAR(6) ,
 `date_of_birth` DATE ,
 `physical_address` VARCHAR(255) ,
 `postal_address` VARCHAR(255) ,
 `contact_number` VARCHAR(75) ,
 `email` VARCHAR(255) ,
 PRIMARY KEY (`membership_number`))
ENGINE = InnoDB;

Using the WHERE SQL clause
WHERE clause is used to specify/apply any condition while retrieving, updating or deleting data from a table. This clause is used mostly with SELECT, UPDATE and DELETEquery.
When we specify a condition using the WHERE clause then the query executes only for those records for which the condition specified by the WHERE clause is true.

Syntax for WHERE clause
Here is how you can use the WHERE clause with a DELETE statement, or any other statement,
DELETE FROM table_name WHERE [condition];
The WHERE clause is used at the end of any SQL query, to specify a condition for execution.

Time for an Example
Consider a table student,
	s_id
	name
	age
	address

	101
	Adam
	15
	Chennai

	102
	Alex
	18
	Delhi

	103
	Abhi
	17
	Banglore

	104
	Ankit
	22
	Mumbai

Now we will use the SELECT statement to display data of the table, based on a condition, which we will add to our SELECT query using WHERE clause.
Let's write a simple SQL query to display the record for student with s_id as 101.
SELECT s_id,
 name,
 age,
 address
 FROM student WHERE s_id = 101;
Following will be the result of the above query.
	s_id
	name
	age
	address

	101
	Adam
	15
	Noida

Applying condition on Text Fields
In the above example we have applied a condition to an integer value field, but what if we want to apply the condition on name field. In that case we must enclose the value in single quote ' '. Some databases even accept double quotes, but single quotes is accepted by all.
SELECT s_id,
 name,
 age,
 address
 FROM student WHERE name = 'Adam';
Following will be the result of the above query.
	s_id
	name
	age
	address

	101
	Adam
	15
	Noida

Operators for WHERE clause condition
Following is a list of operators that can be used while specifying the WHERE clause condition.
	Operator
	Description

	=
	Equal to

	!=
	Not Equal to

	<
	Less than

	>
	Greater than

	<=
	Less than or Equal to

	>=
	Greate than or Equal to

	BETWEEN
	Between a specified range of values

	LIKE
	This is used to search for a pattern in value.

	IN
	In a given set of values

DISTINCT keyword
The distinct keyword is used with SELECT statement to retrieve unique values from the table. Distinct removes all the duplicate records while retrieving records from any table in the database.

Syntax for DISTINCT Keyword
SELECT DISTINCT column-name FROM table-name;

Example using DISTINCT Keyword
Consider the following Emp table. As you can see in the table below, there is employee name, along with employee salary and age.
In the table below, multiple employees have the same salary, so we will be using DISTINCT keyword to list down distinct salary amount, that is currently being paid to the employees.
	eid
	name
	age
	salary

	401
	Anu
	22
	5000

	402
	Shane
	29
	8000

	403
	Rohan
	34
	10000

	404
	Scott
	44
	10000

	405
	Tiger
	35
	8000

SELECT DISTINCT salary FROM Emp;
The above query will return only the unique salary from Emp table.
	salary

	5000

	8000

	10000

SQL Constraints
SQL Constraints are rules used to limit the type of data that can go into a table, to maintain the accuracy and integrity of the data inside table.
Constraints can be divided into the following two types,
1. Column level constraints: Limits only column data.
2. Table level constraints: Limits whole table data.
Constraints are used to make sure that the integrity of data is maintained in the database. Following are the most used constraints that can be applied to a table.
· NOT NULL
· UNIQUE
· PRIMARY KEY
· FOREIGN KEY
· CHECK
· DEFAULT

NOT NULL Constraint
NOT NULL constraint restricts a column from having a NULL value. Once NOT NULL constraint is applied to a column, you cannot pass a null value to that column. It enforces a column to contain a proper value.
One important point to note about this constraint is that it cannot be defined at table level.

Example using NOT NULL constraint
CREATE TABLE Student(s_id int NOT NULL, Name varchar(60), Age int);
The above query will declare that the s_id field of Student table will not take NULL value.

UNIQUE Constraint
UNIQUE constraint ensures that a field or column will only have unique values. A UNIQUE constraint field will not have duplicate data. This constraint can be applied at column level or table level.

Using UNIQUE constraint when creating a Table (Table Level)
Here we have a simple CREATE query to create a table, which will have a column s_id with unique values.
CREATE TABLE Student(s_id int NOT NULL UNIQUE, Name varchar(60), Age int);
The above query will declare that the s_id field of Student table will only have unique values and wont take NULL value.

Using UNIQUE constraint after Table is created (Column Level)
ALTER TABLE Student ADD UNIQUE(s_id);
The above query specifies that s_id field of Student table will only have unique value.

Primary Key Constraint
Primary key constraint uniquely identifies each record in a database. A Primary Key must contain unique value and it must not contain null value. Usually Primary Key is used to index the data inside the table.

Using PRIMARY KEY constraint at Table Level
CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT NULL, Age int);
The above command will creates a PRIMARY KEY on the s_id.

Using PRIMARY KEY constraint at Column Level
ALTER table Student ADD PRIMARY KEY (s_id);
The above command will creates a PRIMARY KEY on the s_id.

Foreign Key Constraint
FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also used to restrict actions that would destroy links between tables. To understand FOREIGN KEY, let's see its use, with help of the below tables:
Customer_Detail Table
	c_id
	Customer_Name
	address

	101
	Adam
	Noida

	102
	Alex
	Delhi

	103
	Stuart
	Rohtak

Order_Detail Table
	Order_id
	Order_Name
	c_id

	10
	Order1
	101

	11
	Order2
	103

	12
	Order3
	102

In Customer_Detail table, c_id is the primary key which is set as foreign key in Order_Detail table. The value that is entered in c_id which is set as foreign key in Order_Detail table must be present in Customer_Detail table where it is set as primary key. This prevents invalid data to be inserted into c_id column of Order_Detail table.
If you try to insert any incorrect data, DBMS will return error and will not allow you to insert the data.

Using FOREIGN KEY constraint at Table Level
CREATE table Order_Detail(
 order_id int PRIMARY KEY,
 order_name varchar(60) NOT NULL,
 c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id)
);
In this query, c_id in table Order_Detail is made as foriegn key, which is a reference of c_id column in Customer_Detail table.

Using FOREIGN KEY constraint at Column Level
ALTER table Order_Detail ADD FOREIGN KEY (c_id) REFERENCES Customer_Detail(c_id);

Behaviour of Foriegn Key Column on Delete
There are two ways to maintin the integrity of data in Child table, when a particular record is deleted in the main table. When two tables are connected with Foriegn key, and certain data in the main table is deleted, for which a record exits in the child table, then we must have some mechanism to save the integrity of data in the child table.
[image: foriegn key behaviour on delete - cascade and Null]
1. On Delete Cascade : This will remove the record from child table, if that value of foriegn key is deleted from the main table.
2. On Delete Null : This will set all the values in that record of child table as NULL, for which the value of foriegn key is deleted from the main table.
3. If we don't use any of the above, then we cannot delete data from the main table for which data in child table exists. We will get an error if we try to do so.
ERROR : Record in child table exist

CHECK Constraint
CHECK constraint is used to restrict the value of a column between a range. It performs check on the values, before storing them into the database. Its like condition checking before saving data into a column.

Using CHECK constraint at Table Level
CREATE table Student(
 s_id int NOT NULL CHECK(s_id > 0),
 Name varchar(60) NOT NULL,
 Age int
);
The above query will restrict the s_id value to be greater than zero.

Using CHECK constraint at Column Level
ALTER table Student ADD CHECK(s_id > 0);

SQL Alias - AS Keyword
Alias is used to give an alias name to a table or a column, which can be a resultset table too. This is quite useful in case of large or complex queries. Alias is mainly used for giving a short alias name for a column or a table with complex names.
Syntax of Alias for table names,
SELECT column-name FROM table-name AS alias-name
Following is an SQL query using alias,
SELECT * FROM Employee_detail AS ed;
Syntax for defining alias for columns will be like,
SELECT column-name AS alias-name FROM table-name;
Example using alias for columns,
SELECT customer_id AS cid FROM Emp;

Example of Alias in SQL Query
Consider the following two tables,
The class table,
	ID
	Name

	1
	abhi

	2
	adam

	3
	alex

	4
	anu

	5
	ashish

and the class_info table,
	ID
	Address

	1
	DELHI

	2
	MUMBAI

	3
	CHENNAI

	7
	NOIDA

	8
	PANIPAT

Below is the Query to fetch data from both the tables using SQL Alias,
SELECT C.id, C.Name, Ci.Address from Class AS C, Class_info AS Ci where C.id = Ci.id;
and the resultset table will look like,
	ID
	Name
	Address

	1
	abhi
	DELHI

	2
	adam
	MUMBAI

	3
	alex
	CHENNAI

SQL Alias seems to be quite a simple feature of SQL, but it is highly useful when you are working with more than 3 tables and have to use JOIN on them.

[bookmark: _GoBack]

image1.jpeg
It's not that difficult to create a
Table
\
]

image2.gif
Deleting Foriegn Key

Cascade Null
(on Delete cascade) (on Delete Null)

