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At high temperature

INTRODUCTION

;ﬂuﬁkmwc ool gases, it is assumed that the molecules of a gas are all indentical and
?e;;f' z ye ast::: spheres of negligible but finite size. Due to haphazard motion, the molecules constanty
;:d ltrav‘:;:: Od'c'f - At room tempe_r_’a[ure, an air molecule suffers about 4 x 10° collisions per se¢O"
motion of gas mlzlzzu;ii?:; 20 m. When the gas is not in equilibrium, the random i.e., haphd”

ion - viscosity, conductivity and diffusion, when it tries to attain &
equilibrium state by transporting momentum, heat and mass respectively -

—t
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Coiarreg 3 - Transport Phenomena in Gases » 873

3,1 Molecular Collisions Ot

- 1o kinetic theor . , ‘
Aw’“hm| . : I)' Ol guses, (he molecules are of finite size, During the random motion
» o i\ Wy . JRT ‘
as molecules an-all possible direction, and with all possible velocities, they collide with each

A molecule moves with u constant speed, along a straight
HOns are known g molecular collisions,

32 Mean Free Path (A,) \/

At S wv,c',' temperature, the moleculey sulfer continuous collisions with one another, Between
any WO collisions, ',h.c molecule travel freely a certain distance in a straight line, This distance is
known as free path. Thus, the path ¢ vered by a gas molecule between any two consecutive collisions
in a straight line 15 Cﬂ“Cfl the free path. The die tion of the molecule is changed after every collision.
After a number of “_”"’“"’”‘- the total parh appears (o be zig-zag and f‘rcc‘pnth 1% not constant as
shown in Fig. 3.1, Therefore, a term megp free path is used and is defined as the average distance
gravelled by a gas molecule between 1w

\ g suecessive collisions, It is denoted by 2, If the total distance
wravelled after N collisions is S, then mean free

path (2.) is given by

ol f i
(her, BEWEEn IWO SUCCERsive colliyjons
othek: 4

fine as shown In Fig. 3.1, These collje
' .

A S
/\. -

N

O
O
O
) o}
Fig. 3.1

Mean free time (1): The average time taken b
sions i called mean free time (1) and is given by
_ A
T = 5
where C'is the average velocity of a gas molecule.

y a gas molecule between two successive colli-

3.3 Sphere of Influence N

In the kinetic theory for an ideal gas, it is assumed that al]
the gas molecules are identical and perfectly elastic spheres
moving randomly in all possible directions. In doing so, they
are continuously colliding against each other. For the sake of
“implicity of calculations, it is assumed that the molecule under

consideration say A, is in motion, all other molecules are at rest
Fig. (3.2). Let o be the diameter of each gas molecule, Taking
E entre of molecule A as a centre, if we draw a sphere of
- Tadius 6, then molecule A will collide with all those molecules

P W"m centres lie within this sphere. Such a sphere is called
- “Phere of influence’,
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84 e Heat, Thermodynamics and Statistical Physics

3.4 Collision Cross-sectfion o
lake a cross-section along the diameter of a RAGSIESANAUCACE, we get colj;

e & % g lled the collision cross-section as shown by dotre, lings i, p, 100
SELRYON. TS AICR SN AR O » probability that a molecule of diame. ' Fig, 3.
the effective area which determines the prob: O wily Colf.

If we tak

another molecule of the same diameter.

Expression for Mean Free Path (Clausius’ EpreSsion)

e ;pt se the mole_culc;: &Té¢§ are all identical perfectly elastic spheres, each of dian,u[
4 1 i1 i ¥ g
e on each other. To simplify the caleyl.,:
assumed that the molecules do not exert any forc piity Ulationg we,

assume that (1) only the molecule under consideration is in motion while all other molecyles iy
SN 2 % » = ., = e
The sphere of influence of the molecule has a radius o i.e. equal to the diameter of the molecy, ;

s o

)

Collision-.
“Cross-Section

Q—de—q —
(@)
v

/
\ \ /
\ /

Fig 3.3
Let ¢ be the average YM molecule A and 7 be the number of molecules per unit voly

then in one second, A will collide with all the molecules whose centres lie within a cylinder of ra

O and length c.
No. of molecules in the cylinder
= 1'CCF2 cn
No. of collisions made by molecule A in 1 second

= n0” cn

seconds.

I Collision takes place in
G cn

The time interval between two successive collisions

1
= > seconds
TG cn

Distance travelled between two successive collisions
speed X time

1
no’en

I
no’n
[ g
no’n
This is Clausius’ €xpression for the mean free path.
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cwell’'s Formula

The above CXP"}'”""" (3‘-|? 15 no.l exact because it is based on the assumption that only one

Jolecule under wlmflcmm):] i '““l‘lun while all other are at rest. If the motion of all the m()lccuvlcs
y n into account and the Maxwell’s law of distribution of molecular velocities is applied, which
old in steady state, the corrected formula for mean free path is

A= —x | (3.2)
V216’ n k.

~ Thisis Maxwell’s formula for the mean free path.
S,

Ma

is take
must h

> e v M 9} B » c
{f L and n are known, the molecular diameter & can be calculated. Collision f requency is f = - where
A

s average velocity of the gas molecule,
CR

3.6 Variation of A with Temperature and Pressure
PP e e s
Consider 1 mole of an ideal gas. Then
PV = RT
Dividing both sides by N, the Avogadro’s number, we have,
PV _ RT
N ~— N
N R
P = v T

N
The pressure P of a gas is given by
i

= .(33)

. R :
Where, n = % , the no. of molecules per unit volume and k = — , the Boltzmann’s constant.

N ’
; : P
Equation (3.3) gives, no=3r
Substituting for 7 in equation (3.2), the mean free path
1
e
V2 mo’n
kT
or A= J2 n6*P .(34)
Thus, the mean free path varies directly as the absolute temperature (T) and inversely as the

pressure.

3.7 Transport Phenomena \/

According to the kinetic theory of gases, the molecules of a gas are in a state of thermal agitation.
The gas, therefore, attains a steady state or equilibrium state by transporting momentum, heat (therrr_xal
energy) and mass from one layer of a gas to another layer, giving rise to the viscosity, conductivity
and diffusion respectively and the phenomena is called transport phenomena.

The transport phenomena occur only in the non-equilibrium state of a gas.

38 Viscosity: Transport of Momentum \/

The different layers of a non-equilibrium gas may have different velocities. This will result in the

relative motion of the different layers with respect to one another. In such a case, the layer moving
faster will impart momentum to the layer moving slower to bring about an equilibrium state. Thus, the

ransport of momentum gives rise o the phenomenon of viscosity.
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al) gives rise the py,
Phe
h(),

Ny

equilibrium state. Thus. the transport of thermal energy (therm

thermal conductivity.
Consider a fixed mass of a gas at rest as shown in Fig, 3.5 Suppose th
’ 8 €Ie iS 2 1ypep
a Unifor,
ach hori; My
Nzonty) laye
r }]r;”

ture gradient <= along OZ. In the steady state, the temperature of e

— N

T E / :r P (em%’)
A |L [/:
I
s % ; ;' B o
“ A | 1 :
8
C [/ D (e Agzﬂ)

O
Fig. 3.5
OX is constant. Let 8 be the temperature of layer AB. The temperature of the layer EF which is

distance A (the mean free path) above AB is ( 0 +7\-Z—f) and the layer CD at the distance A below 4

will be ( 6—A %_Q) _ This means the gas above the layer AB is at higher temperature than the gas belor

AB. Hence, molecules of gas coming from EF and passing downward across AB possesses more K.
than the molecules coming from CD and passing upward across AB. Thus, the average energ) o
ow AB is continuously increasing and that of molecules above AB is continuously ¢

molecules bel
creasing, till the equilibrium is reached.
g unit area of the layer AB upward or downward per second %

Number of molecules crossin
molecules per unit volume and c is the average molecular velocity.
erAB up\\';lm

where n is the number of gas
of each gas molecule, then the mass of gas crossing unit area of lay

If m is the mass
g mnc
5
ume, then
wn\\'ill‘ki

or downward per second =
If C, be the specific heat of the gas at constant vol
Heat energy carried by the molecules in crossing uni
direction per second
— mass x specific heat x temperature

t area of the layer AB in the do

pw;u'd

do
’—"—é’—c—xc,, x(6+2,;1—z-) |
n unit area of the layer AB 1n the u

y. heat energy carried by the molecules crossing i
de)

Similarl
mnc o
-—6—— X CV X (6 A —"‘dz

direction per secon
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CHAPTER 3 - Transport Phenomena in Gases » 89
Net transfer of heat energy per ypig area of layer AB in the downward direction per second
— mnc

) = ¢ d®\ mnc _ . do
(* 6 XC\‘X(B+)\'T)— -v(—»x(\,x(e—kuh)

ag )
nmne

= M L d0
‘ 6 XCy X2\ 4e = 3mne xCVXTIz
Since mn = P. the density of the gas,

o L do
‘ 0 - 3 peA C, e .(3.8)
The coefficient of thermal conductivity (K) of the

5 gas is defined as the quantity of heat that flows
per unit area per second per unit lemperature gradient,
- d
or Q = k49

o ...(3.9)
Equating equation (3.8) and (3.9),

- d0 | 10
Lo B O /)
% 3 pcAC, &
or, K = %DCQ\.CV ...(3.10)

3.12 Relation betweenn andk

The coefficient of viscosity of a gas is given by

|
n = g pc )\.
and, the coefficient of thermal conductivity is

K

1
5 pC)& CV

Kl="n Cy & e
The relation is, however, does not hold

good with the experimental values since it is true only if
all the heat supplied is converted into kinetic energy of translation.

According to Chapman and Enskog, the corrected value is
K =eng,

where € = i (9 y-5), where yis ratio of two specific heats of the gas.

W | —

L(B9)
3.13 Effect of Temperature on K

The coefficient of thermal conductivity (K) is given by equation (3.10) as

K = %pc?»CV

= l3mnc.Cv7x (" p=mn)
O lmnc C x*

. 3 Y2 natn
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mcC,,

K = 73

3«/5n0‘
But C«ﬁ
KoNT

“ Thlll\ the coefficient of thermal conductivity of a gas is directly proportional tg
s absolute tem / nt of therm [ w
perature. In other words, coefficient of thermal conductivity mcreaseiS e
ith

in the temperature.

3 14 Effect of Pressure on K

In the relation, K = enC all the i '
_ . » quantities €, 1) and C,, are independent of
coefficient of conductivity K is also independent of pressurg. e

3 15 Lorgest Thermal Conduchwty of Hydrogen

The coefficient of thermal conductmty of a gas is given by

K = —3‘pClCV
L TR 1
Substituting for =T
£ J2 no’n
] meG
we have, K =77 s
= 3«/5 o’ O vy

If M is the molecular weight and N. the Avogadro’s number, then m = %— and C,, its molx

specific heat. then
Cv

)5

3\5 1" M
C ]

—l_ < ’ 2 4 ..,(j“]~

3J/2 mNo

In this relation, N is constant, being Avogadro’s n

specific heat Cy is the same for all gases being

umber. For a diatomic gas, the value of it

equal to -;—R. Assuming equal molecu

molecular

diameters (o) for all gases
Kec

¢ = average speed of the molecules

8kT
m

But

Where K is Boltzmann’s constant.
|

Koc—
‘[’; : ¢ of the
Thus. coefficient of thermal conductivity (K) is inversely pmpomonal to the square ro¢

massofthcmoleculeofmegas i
As the mass of molecule of hydrogen is the Jeast among diatomic gases,
(K) of hydrogen gas will be greatest at a given temperature.

the thermal conductivi®
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3,16 self Diffusion: Transport of Mass B e

The phenomenon of self diffusion i
e atiorierc sion is due (o the transport of mass from a region of hi
gration 10 4 T€E wer concentration 1o bring about an equili i i
¥ an equilibrium,

(‘mqldcf a ﬂt’lf\ hMiny a concentraty ngr i ,” r
- i of ) atio 3 ;“"C” ¢ v 4 7

AB. dz
Consider two more layers EF ; v

free path of the m«,lzirl;l;ft llt::];l:) ab‘;,vc and below that el AD ati Gindti e SN
4 do not collide between these two l“ycr,: :’;’i’;l’;t.(:;mluulcn moving vertically upward or down-

war
z
Q
E‘, ' /
r ' / dn
! p I |
! A i y
‘ f
At l ‘ |
! l
f i — e
A ! |
( l _-gl)
T p (n-192
n
o —rX

Fig 3.6

CawnmionatdlclaycrEF=n+k%

mdcmcanmionatd)claychD=n-’A %'zl
Therefore, the number of molecules coming from Jayer EF and crossing AB downward per unit
area per second

- —é—c(n-ﬁ.%)

ing from layer CD and crossing AB upward per unit area per second

and number of molecules com

Net number of molecules crossing per unit area per second of layer AB in downward direc

tion
I dn)_ 1 (_ 4_'1)
EC("*ldz) e Ve
g
B dz
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The coefficient of diffusion is defined as the ratio of the number of molec
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UIC\, Cr

area in one second to the rate of change of concentration with distance, OSsip, ;(
| 4 dn
. 3¢ A %
Coefficient of diffusion D = __‘.1_’7
dz
D= 3lc7k
3.17 Effect of Temperature and Pressure
kT |
G fiax V2 no’ p from,
8kT
and C = En—
D - L__ kT  [BkT
T8 V2rolp \ nm
3
S
36’ Pym \

s shows that the coefficient of self diffusion 1s
Preportional to the pressure P,

3.18 Relation Between n and p

From the relations for

and D = % cA
we have D = -E 07
'This relation between p and 1 does not agree well with the €Xperimental valyes for a gas. A mor
detailed analysis yields the relation i
Al
D = f=
p

P .
Where 17 is 2 Numerica] fy

_ » Molecular diameter (0). mean free PL
of Viscosity (K) a( N.TP. and specific heat capacity at
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