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Chapter 

6 
 
 

BASIC TRAVERSAL 

AND SEARCH TECHNIQUES 

 
Search means finding a path or traversal between a start node and one of a set of 
goal nodes. Search is a study of states and their transitions. 

 

Search involves visiting nodes in a graph in a systematic manner, and may or may  
not result into a visit to all nodes. When the search necessarily involved the 
examination of every vertex in the tree, it is called the traversal. 

 
 

 Techniques for Traversal of a Binary Tree: 
 

A binary tree is a finite (possibly empty) collection of elements. When the binary tree 
is not empty, it has a root element and remaining elements (if any) are partitioned 
into two binary trees, which are called the left and right subtrees. 

 
There are three common ways to traverse a binary tree: 

 

1. Preorder 
2. Inorder 

3. postorder 
 

In all the three traversal methods, the left subtree of a node is traversed before the 
right subtree. The difference among the three orders comes from the difference in the 
time at which a node is visited. 

 
 

 Inorder Traversal: 
 

In the case of inorder traversal, the root of each subtree is visited after its left subtree 
has been traversed but before the traversal of its right subtree begins. The steps for 
traversing a binary tree in inorder traversal are: 

 

1. Visit the left subtree, using inorder. 
2. Visit the root. 
3. Visit the right subtree, using inorder. 

 

The algorithm for preorder traversal is as follows: 

 
treenode = record 
{ 

Type  data; //Type is the data type of data. 
Treenode *lchild; treenode *rchild; 

} 
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algorithm inorder (t) 
// t is a binary tree. Each node of t has three fields: lchild, data, and rchild. 

{ 
if t  0 then 

{ 
inorder (t  lchild); 
visit (t); 
inorder (t  rchild); 

} 
} 

 

 Preorder Traversal: 

 
In a preorder traversal, each node is visited before its left and right subtrees are 
traversed. Preorder search is also called backtracking. The steps for traversing a 
binary tree in preorder traversal are: 

 
1. Visit the root. 

2. Visit the left subtree, using preorder. 

3. Visit the right subtree, using preorder. 
 

The algorithm for preorder traversal is as follows: 
 
Algorithm Preorder (t) 

// t is a binary tree. Each node of t has three fields; lchild, data, and rchild. 

{ 
if t  0 then 
{ 

visit (t); 
Preorder (t  lchild); 
Preorder (t  rchild); 

} 

} 

 
 

 Postorder Traversal: 
 

In a postorder traversal, each root is visited after its left and right subtrees have been 
traversed. The steps for traversing a binary tree in postorder traversal are: 

 
1. Visit the left subtree, using postorder. 
2. Visit the right subtree, using postorder 

3. Visit the root. 
 

The algorithm for preorder traversal is as follows: 
 
Algorithm Postorder (t) 

// t is a binary tree. Each node of t has three fields : lchild, data, and rchild. 

{ 
if t  0 then 

{ 
Postorder (t  lchild); 
Postorder (t  rchild); 
visit(t); 

} 
} 
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Examples for binary tree traversal/search technique: 
 
 

Example 1: 
 

Traverse the following binary tree in pre, post and in-order. 
 
 

Bin a ry T re e Pre, P o st a n d In- ord er T rav ers in g 

 

Example 2: 

 

Traverse the following binary tree in pre, post, inorder and level order. 
 

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g 

 

Example 3: 
 

Traverse the following binary tree in pre, post, inorder and level order. 
 

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g 

A 

B C 

D E F 

G H I 

 
Preord eri ng of t he vertices: 

A, B, D, C, E, G, F, H,  I. 

 
Post ord eri ng of t he vertices: 

D, B, G, E, H, I, F, C,  A. 

 
Inord eri ng of t he vertices: 

D, B, A, E, G, C, H, F,  I 

A 

B C 

D E F 

G H I 

• P reo rde r t ra v e rs a l y ie lds: 
A, B, D, C , E, G , F , H,  I 

 

• Posto rde r t ra v e rs a l y ie lds: 
D, B, G , E, H, I, F , C ,  A 

 

• Ino rde r t ra v e rs a l y ie lds: 
D, B, A, E, G , C , H, F , I 

 

• Le v e l o rde r t ra v e rs a l y ie lds: 
A, B, C , D, E, F , G , H,  I 

P 

F S 

 
B H R Y 

G T Z 

W 

• P reo rde r t ra v e rs a l y ie lds: 
P , F , B, H, G , S, R, Y, T, W ,  Z 

 

• Posto rde r t ra v e rs a l y ie lds: 
B, G , H, F , R, W ,  T, Z, Y, S, P 

 

• Ino rde r t ra v e rs a l y ie lds: 
B, F , G , H, P , R, S, T, W ,  Y, Z 

 
• Le v e l o rde r t ra v e rs a l y ie lds: 

P , F , S, B, H, R, Y, G , T, Z,   
W 
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Example 4: 
 

Traverse the following binary tree in pre, post, inorder and level order. 
 

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g 

 

Example 5: 
 

Traverse the following binary tree in pre, post, inorder and level order. 
 

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g 

 

 Non Recursive Binary Tree Traversal Algorithms: 
 
 

At first glance, it appears we would always want to use the flat traversal functions 
since the use less stack space. But the flat versions are not necessarily better. For 
instance, some overhead is associated with the use of an explicit stack, which may 
negate the savings we gain from storing only node pointers. Use of the implicit 
function call stack may actually be faster due to special machine instructions that can 
be used. 

 
 

Inorder Traversal: 
 

Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex, pushing each vertex onto 
the stack and stop when there is no left son of vertex. 

 
2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with 

right son exists, then set right son of vertex as current vertex and return to 
step one. 

2 

7 5 

2 6 9 

5 11 4 

• P reo rde r t ra v e rs a l y ie lds: 
2 , 7 , 2 , 6 , 5 , 11 , 5 , 9 , 4 

 

• Posto rde r t ra v a rs a l y ie lds: 
2 , 5 , 11 , 6 , 7 , 4 , 9 , 5 , 2 

 

• Ino rde r t ra v a rs a l y ie lds: 
2 , 7 , 5 , 6 , 11 , 2 , 5 , 4 , 9 

 

• Le v e l o rde r t ra v e rs a l y ie lds: 
2 , 7 , 5 , 2 , 6 , 9 , 5 , 11 , 4 

A 

B C 

D E 

G H 

K L M 

• Preo rde r t rav e rs al y ie lds: 
A, B, D, G , K, H, L, M , C ,  E 

 

• Posto rde r t rav ars al y ie lds: 
K, G , L, M , H, D, B, E, C ,  A 

 

• Ino rde r t rav ars al y ie lds: 
K, G , D, L, H, M , B, A, E,   C 

 
• Le v e l o rde r t rav e rs al y ie lds: 

A, B, C , D, E, G , H, K, L,   M 
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The algorithm for inorder Non Recursive traversal is as follows: 
 

Algorithm inorder() 
{ 

stack[1] = 0 
vertex = root 

top: while(vertex ≠ 0) 

{ 
push the vertex into the stack 
vertex = leftson(vertex) 

} 
 

pop the element from the stack and make it as vertex 
 

while(vertex ≠ 0) 
{ 

print the vertex node 
if(rightson(vertex) ≠ 0) 
{ 

vertex = rightson(vertex) 
goto top 

} 
pop the element from the stack and made it as vertex 

} 
} 

 
 

Preorder Traversal: 
 
Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 
1. Proceed down the left most path by pushing the right son of vertex onto stack, 

if any and process each vertex. The traversing ends after a vertex with no left 
child exists. 

 
2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit. 

 

The algorithm for preorder Non Recursive traversal is as follows: 
 
Algorithm preorder( ) 
{ 

stack[1]: = 0 
vertex := root. 
while(vertex ≠ 0) 
{ 

print vertex node 
if(rightson(vertex) ≠ 0) 

push the right son of vertex into the stack. 
if(leftson(vertex) ≠ 0) 

vertex := leftson(vertex) 
else 

 

} 

} 

 

pop the element from the stack and made it as vertex 
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Postorder Traversal: 
 
Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex. At each vertex of path push 
vertex on to stack and if vertex has a right son push –(right son of vertex) 
onto stack. 

 

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If 
a negative node is popped, then ignore the sign and return to step one. 

 

The algorithm for postorder Non Recursive traversal is as follows: 

 
Algorithm postorder( ) 

{ 
stack[1] := 0 
vertex := root 

 
top: while(vertex ≠ 0) 

{ 
push vertex onto stack 
if(rightson(vertex) ≠ 0) 

push -(vertex) onto stack 
vertex := leftson(vertex) 

} 
pop from stack and make it as vertex 
while(vertex > 0) 
{ 

print the vertex node 
pop from stack and make it as vertex 

} 
if(vertex < 0) 
{ 

vertex := -(vertex) 
goto top 

} 
} 

 
 

Example 1: 

 
Traverse the following binary tree in pre, post and inorder using non-recursive 
traversing algorithm. 

 

Bin a ry T re e Pre, P o st a n d In ord er T rav ers in g 

A 

B C 

D E 

G H 

K L M 

 

 
• Preo rde r t rav e rs al y ie lds: 

A, B, D, G , K, H, L, M , C ,  E 

 

• Posto rde r t rav ars al y ie lds: 
K, G , L, M , H, D, B, E, C ,  A 

 

• Ino rde r t rav ars al y ie lds: 
K, G , D, L, H, M , B, A, E,   C 
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Inorder Traversal: 
 
Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex, pushing each vertex onto 
the stack and stop when there is no left son of vertex. 

 

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with 
right son exists, then set right son of vertex as current vertex and return to 
step one. 

 
Current 
vertex 

Stack Processed nodes Remarks 

A 0  PUSH 0 

 0 A B D G K  PUSH the left most path of A 

K 0 A B D G K POP K 

G 0 A B D K G POP G since K has no right son 

D 0 A B K G D POP D since G has no right son 

H 0 A B K G D 
Make the right son of D as 
vertex 

H 0 A B H L K G D PUSH the leftmost path of H 

L 0 A B H K G D L POP L 

H 0 A B K G D L H POP H since L has no right son 

M 0 A B K G D L H 
Make the right son of H as 
vertex 

 0 A B M K G D L H PUSH the left most path of M 

M 0 A B K G D L H M POP M 

B 0 A K G D L H M B POP B since M has no right son 

A 0 K G D L H M B A 
Make the right son of A as 
vertex 

C 0 C E K G D L H M B A PUSH the left most path of C 

E 0 C K G D L H M B A E POP E 

C 0 K G D L H M B A E C Stop since stack is empty 

 
 
 

Postorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 
1. Proceed down the left most path rooted at vertex. At each vertex of path push 

vertex on to stack and if vertex has a right son push -(right son of vertex)  
onto stack. 

 
2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If 

a negative node is popped, then ignore the sign and return to step one. 
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Current 
vertex 

Stack Processed nodes Remarks 

A 0  PUSH 0 

 0 A -C B D -H G K  PUSH the left most path of A with 
a -ve for right sons 

 0 A -C B D -H K G POP all +ve nodes K and G 

H 0 A -C B D K G Pop H 

 0 A -C B D H -M L K G 
PUSH the left most path of H with 
a -ve for right sons 

 0 A -C B D H -M K G L POP all +ve nodes L 

M 0 A -C B D H K G L Pop M 

 0 A -C B D H M K G L 
PUSH the left most path of M with 
a -ve for right sons 

 0 A -C K G L M H D B POP all +ve nodes M, H, D and B 

C 0 A K G L M H D B Pop C 

 0 A C E K G L M H D B 
PUSH the left most path of C with 
a -ve for right sons 

 0 K G L M H D B E C A POP all +ve nodes E, C and A 

 0  Stop since stack is empty 

 
 

Preorder Traversal: 
 

Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 
1. Proceed down the left most path by pushing the right son of vertex onto stack, 

if any and process each vertex. The traversing ends after a vertex with no left 

child exists. 
 

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit. 
 

Current 
vertex 

Stack Processed nodes Remarks 

A 0  PUSH 0 

  
0 C H 

 
A B D G K 

PUSH the right son of each vertex onto 
stack and process each vertex in the left 
most path 

H 0 C A B D G K POP H 

  
0 C M 

 
A B D G K H L 

PUSH the right son of each vertex onto 
stack and process each vertex in the left 
most path 

M 0 C A B D G K H L POP M 

  
0 C 

 
A B D G K H L M 

PUSH the right son of each vertex onto 
stack and process each vertex in the left 
most path; M has no left path 

C 0 A B D G K H L M Pop C 

  
0 

 
A B D G K H L M C E 

PUSH the right son of each vertex onto 
stack and process each vertex in the left 
most path; C has no right son on the left 
most path 

 0 A B D G K H L M C E Stop since stack is empty 
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Example 2: 
 
Traverse the following binary tree in pre, post and inorder using non-recursive 
traversing algorithm. 

 

Bin a ry T re e Pre, P o st a n d In ord er T rav ers in g 

 

Inorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 
1. Proceed down the left most path rooted at vertex, pushing each vertex onto 

the stack and stop when there is no left son of vertex. 
 

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with 
right son exists, then set right son of vertex as current vertex and return to 
step one. 

 
Current 
vertex 

Stack Processed nodes Remarks 

2 0   

 0 2 7 2   

2 0 2 7 2  

7 0 2 2 7  

6 0 2 6 5 2 7  

5 0 2 6 2 7 5  

11 0 2 2 7 5 6 11  

5 0 5 2 7 5 6 11 2  

9 0 9 4 2 7 5 6 11 2 5  

4 0 9 2 7 5 6 11 2 5 4  

 0 2 7 5 6 11 2 5 4 9 Stop since stack is empty 

 
 

Postorder Traversal: 
 
Initially push zero onto stack and then set root as vertex. Then repeat the following 
steps until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex. At each vertex of path push 
vertex on to stack and if vertex has a right son push –(right son of vertex)  
onto stack. 

2 

7 5 

2 6 9 

5 11 4 

 
• Preo rde r t rav e rs al y ie lds: 

2, 7 , 2 , 6 , 5 , 11 , 5 , 9 , 4 
 

• Posto rde r t rav ars al y ie lds: 
2, 5 , 11 , 6 , 7 , 4 , 9 , 5 , 2 

 

• Ino rde r t rav ars al y ie lds: 
2, 7 , 5 , 6 , 11 , 2 , 5 , 4 , 9 
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2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If 
a negative node is popped, then ignore the sign and return to step one. 

 
Current 
vertex 

Stack Processed nodes Remarks 

2 0   

 0 2 -5 7 -6 2   

2 0 2 -5 7 -6 2  

6 0 2 -5 7 2  

 0 2 -5 7 6 -11 5 2  

5 0 2 -5 7 6 -11 2 5  

11 0 2 -5 7 6 11 2 5  

 0 2 -5 2 5 11 6 7  

5 0 2 5 -9 2 5 11 6 7  

9 0 2 5 9 4 2 5 11 6 7  

 0 2 5 11 6 7 4 9 5 2 Stop since stack is empty 

 
 

Preorder Traversal: 
 

Initially push zero onto stack and then set root as vertex. Then repeat the following 

steps until the stack is empty: 
 

1. Proceed down the left most path by pushing the right son of vertex onto stack, 
if any and process each vertex. The traversing ends after a vertex with no left 
child exists. 

 

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit. 

 
Current 
vertex 

Stack Processed nodes Remarks 

2 0   

 0 5 6 2 7 2  

6 0 5 11 2 7 2 6 5  

11 0 5 2 7 2 6 5  

 0 5 2 7 2 6 5 11  

5 0 9 2 7 2 6 5 11  

9 0 2 7 2 6 5 11 5  

 0 2 7 2 6 5 11 5 9 4 Stop since stack is empty 

 
 

 Techniques for graphs: 
 
Given a graph G = (V, E) and a vertex V in V (G) traversing can be done in two ways. 

 

1. Depth first search 

2. Breadth first search 

3. D-search (Depth Search) 
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 Depth first search: 
 
With depth first search, the start state is chosen to begin, then some successor of the 
start state, then some successor of that state, then some successor of that and so on, 

trying to reach a goal state. 
 
If depth first search reaches a state S without successors, or if all the successors of a 
state S have been chosen (visited) and a goal state has not get been found, then it 
“backs up” that means it goes to the immediately previous state or predecessor 
formally, the state whose successor was ‘S’ originally. 

 

For example consider the figure. The circled letters are state and arrows are  
branches. 

 
 
 
 

 
ST A RT 

 
G OA L 

 
 
 

 

Suppose S is the start and G is the only goal state. Depth first search will first visit S, 
then A then D. But D has no successors, so we must back up to A and try its second 
successor, E. But this doesn’t have any successors either, so we back up to A again. 
But now we have tried all the successors of A and haven’t found the goal state G so 
we must back to ‘S’. Now ‘S’ has a second successor, B. But B has no successors, so 

we back up to S again and choose its third successor, C. C has one successor, F. The 
first successor of F is H, and the first of H is J. J doesn’t have any successors, so we 
back up to H and try its second successor. And that’s G, the only goal state. So the 
solution path to the goal is S, C, F, H and G and the states considered were in order  
S, A, D, E, B, C, F, H, J, G. 

 
Disadvantages: 

 

1. It works very fine when search graphs are trees or lattices, but can get 
struck in an infinite loop on graphs. This is because depth first search can 
travel around a cycle in the graph forever. 

 

To eliminate this keep a list of states previously visited, and never permit 
search to return to any of them. 

 

2. One more problem is that, the state space tree may be of infinite depth, to 
prevent consideration of paths that are too long, a maximum is often  
placed on the depth of nodes to be expanded, and any node at that depth  
is treated as if it had no successors. 

 
3. We cannot come up with shortest solution to the problem. 

D 

A 

E 

J 

S B 

H G 

C F 
K 

I 
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Time Complexity: 
 
Let n = |V| and e = |E|. Observe that the initialization portion requires  (n) time. 
Since we never visit a vertex twice, the number of times we go through the loop is at 
most n (exactly n assuming each vertex is reachable from the source). As, each  
vertex is visited at most once. At each vertex visited, we scan its adjacency list once. 
Thus, each edge is examined at most twice (once at each endpoint). So the total 
running time is O (n + e). 

 

Alternatively, 
 

If the average branching factor is assumed as ‘b’ and the depth of the solution as ‘d’, 
and maximum depth m ≥ d. 

 

The worst case time complexity is O(bm ) as we explore bm nodes. If many solutions 
exists DFS will be likely to find faster than the BFS. 

 
 
Space Complexity: 

 

We have to store the nodes from root to current leaf and all the unexpanded siblings 
of each node on path. So, We need to store bm nodes. 

 
 

 Breadth first search: 

 

Given an graph G = (V, E), breadth-first search starts at some source vertex S and 
“discovers" which vertices are reachable from S. Define the distance between a vertex 
V and S to be the minimum number of edges on a path from S to V. Breadth-first 
search discovers vertices in increasing order of distance, and hence can be used as an 
algorithm for computing shortest paths (where the length of a path = number of  
edges on the path). Breadth-first search is named because it visits vertices across the 
entire breadth. 

 

To illustrate this let us consider the following tree: 
 
 
 
 

 
ST A RT 

 
G OA L 

 
 

 
 

 

Breadth first search finds states level by level. Here we first check all the immediate 
successors of the start state. Then all the immediate successors of these, then all the 
immediate successors of these, and so on until we find a goal node. Suppose S is the 

start state and G is the goal state. In the figure, start state S is at level 0; A, B and C 
are at level 1; D, e and F at level 2; H and I at level 3; and J, G and K at level 4. So 
breadth first search, will consider in order S, A, B, C, D, E, F, H, I, J and G and then 
stop because it has reached the goal node. 

D 

A 

E 

J 

S B 

H G 

C F 
K 

I 
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Breadth first search does not have the danger of infinite loops as we consider states  
in order of increasing number of branches (level) from the start state. 

 
One simple way to implement breadth first search is to use a queue data structure 

consisting of just a start state. Any time we need a new state, we pick it from the 
front of the queue and any time we find successors, we put them at the end of the 
queue. That way we are guaranteed to not try (find successors of) any states at level 
‘N’ until all states at level ‘N – 1’ have been tried. 

 
 
Time Complexity: 

 

The running time analysis of BFS is similar to the running time analysis of many graph 
traversal algorithms. Let n = |V| and e = |E|. Observe that the initialization portion 
requires  (n) time. Since we never visit a vertex twice, the number of times we go 
through the loop is at most n (exactly n, assuming each vertex is reachable from the 
source). So, Running time is O (n + e) as in DFS. For a directed graph the analysis is 
essentially the same. 

 

Alternatively, 
 

If the average branching factor is assumed as ‘b’ and the depth of the solution as ‘d’. 
 
In the worst case we will examine 1 + b + b2 + b3 + . . . + bd = (bd + 1 - 1) / (b –1) = 
O(bd ). 

 
In the average case the last term of the series would be bd / 2. So, the complexity is 
still O(bd) 

 
 

Space Complexity: 

 
Before examining any node at depth d, all of its siblings must be expanded and  
stored. So, space requirement is also O(bd). 

 
 

 Depth Search (D-Search): 
 

The exploration of a new node cannot begin until the node currently being explored is 
fully explored. D-search like state space search is called LIFO (Last In First  Out) 
search which uses stack data structure. To illustrate the D-search let us consider the 
following tree: 

 
 
 

 

 
ST A RT 

 
G OA L 

 
 
 

 

The search order for goal node (G) is as follows: S, A, B, C, F, H, I, J, G. 

D 

A 

E 

J 

S B 

H G 

C F 
K 

I 
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3 

2 

1 2 3 

1 2 3 

1 
1 

2 
2 

3 3 

(a)   Adjacency Matrix (b)   Adjacency List 



Time Complexity: 
 
The time complexity is same as Breadth first search. 

 

 

 Representation of Graphs and Digraphs by Adjacency List: 
 
We will describe two ways of representing digraphs. We can represent undirected 
graphs using exactly the same representation, but we will double each edge, 
representing the undirected edge {v, w} by the two oppositely directed edges (v, w) 
and (w, v). Notice that even though we represent undirected graphs in the same way 
that we represent digraphs, it is important to remember that these two classes of 
objects are mathematically distinct from one another. 

 
Let G = (V, E) be a digraph with n = |V| and let e = |E|. We will assume that the 
vertices of G are indexed {1, 2, . . . . . , n}. 

 

A v, w   
1

 

0 

if v,w  E 

otherwise 

 

Adjacency List: An array Adj [1 . . . . . . . n] of pointers where for 1 < v < n, Adj [v] 
points to a linked list containing the vertices which are adjacent to v (i.e. the vertices 
that can be reached from v by a single edge). If the edges have weights then these 
weights may also be stored in the linked list elements. 

 

 

1 1 
 

1 

 

0 
 

0 1 

0 1 0 

 
 

Adjacency matrix and adjacency  list 

 

An adjacency matrix requires Θ (n2) storage and an adjacency list requires Θ (n + e) 

storage. 
 

Adjacency matrices allow faster access to edge queries (for example, is (u, v)  E) 
and adjacency lists allow faster access to enumeration tasks (for example, find all the 
vertices adjacent to v). 

 
 

 Depth First and Breadth First Spanning Trees: 
 

BFS and DFS impose a tree (the BFS/DFS tree) along with some auxiliary edges  
(cross edges) on the structure of graph. So, we can compute a spanning tree in a 
graph. The computed spanning tree is not a minimum spanning tree. Trees are much 
more structured objects than graphs. For example, trees break up nicely into  
subtrees, upon which subproblems can be solved recursively. For directed graphs the 

other edges of the graph can be classified as follows: 
 

Back edges: (u, v) where v is a (not necessarily proper) ancestor of u in the tree. 
(Thus, a self-loop is considered to be a back edge). 
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2 3 

Forward edges: (u, v) where v is a proper descendent of u in the tree. 
 
Cross edges: (u, v) where u and v are not ancestors or descendents of one another 
(in fact, the edge may go between different trees of the forest). 

 
 

 Depth first search and traversal: 
 

Depth first search of undirected graph proceeds as follows. The start vertex V is 
visited. Next an unvisited vertex 'W' adjacent to 'V' is selected and a depth first  
search from 'W' is initiated. When a vertex 'u' is reached such that all its adjacent 
vertices have been visited, we back up to the last vertex visited, which has an 
unvisited vertex 'W' adjacent to it and initiate a depth first search from W. The search 
terminates when no unvisited vertex can be reached from any of the visited ones. 

 

Let us consider the following Graph (G): 
 
 

Gra p h 

 

The adjacency list for G is: 
 

 
V ert e x 

 

1 

 
2   1   4   5  

3   1   6   7    

4 
   

2    

8       

5   2   8       

6   3   8       

7   3   8       
 

8 
   

4 
   

5 
   

6 
   

7 

 
 

If the depth first is initiated from vertex 1, then the vertices of G are visited in the 
order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree is as follows: 

1 

2 3 

4 5 6 7 

8 
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De p t h F irst S p a n n in g T re e 

 

 

The spanning trees obtained using depth first searches are called depth first spanning 
trees. The edges rejected in the context of depth first search are called a back edges. 
Depth first spanning tree has no cross edges. 

 
 

 Breadth first search and traversal: 
 

Starting at vertex 'V' and marking it as visited, BFS differs from DFS in that all 
unvisited vertices adjacent to V are visited next. Then unvisited vertices adjacent to 
there vertices are visited and so on. A breadth first search beginning at vertex 1 of 
the graph would first visit 1 and then 2 and 3. 

 
 

Bre a dt h F irst S p a n n in g T re e 

 
Next vertices 4, 5, 6 and 7 will be visited and finally 8. The spanning trees obtained 

using BFS are called Breadth first spanning trees. The edges that were rejected in the 
breadth first search are called cross edges. 

 
 

 Articulation Points and Biconnected Components: 
 

Let G = (V, E) be a connected undirected graph. Consider the following definitions: 
 
Articulation Point (or Cut Vertex): An articulation point in a connected graph is a 
vertex (together with the removal of any incident edges) that, if deleted, would break 
the graph into two or more pieces.. 

 
Bridge: Is an edge whose removal results in a disconnected graph. 

 

Biconnected: A graph is biconnected if it contains no articulation points. In a 
biconnected graph, two distinct paths connect each pair of vertices. A graph that is 
not biconnected divides into biconnected components. This is illustrated in the 
following figure: 

1 

2 3 

4 5 6 7 

8 

1 

2 3 

4 5 6 7 

8 
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Articulation Points and Bridges 

 

 

Biconnected graphs and articulation points are of great interest in the design of 
network algorithms, because these are the “critical" points, whose failure will result in 
the network becoming disconnected. 

 
Let us consider the typical case of vertex v, where v is not a leaf and v is not the root. 
Let w1, w2, . . . . . . . wk be the children of v. For each child there is a subtree of the 
DFS tree rooted at this child. If for some child, there is no back edge going to a  
proper ancestor of v, then if we remove v, this subtree becomes disconnected from 
the rest of the graph, and hence v is an articulation point. 

 
On the other hand, if every one of the subtree rooted at the children of v have back 
edges to proper ancestors of v, then if v is removed, the graph remains connected 
(the back edges hold everything together). This leads to the following: 

 
Observation 1: An internal vertex v of the DFS tree (other than the root) is 
an articulation point if and only if there is a subtree rooted at a child of v such 
that there is no back edge from any vertex in this subtree to a proper ancestor 
of v. 

 

Observation 2: A leaf of the DFS tree is never an articulation point, since a 
leaf will not have any subtrees in the DFS tree. 

 

Thus, after deletion of a leaf from a tree, the rest of the tree remains 
connected, thus even ignoring the back edges, the graph is connected after  
the deletion of a leaf from the DFS tree. 

 

Observation 3: The root of the DFS is an articulation point if and only if it has 
two or more children. If the root has only a single child, then (as in the case of 

leaves) its removal does not disconnect the DFS tree, and hence cannot 
disconnect the graph in general. 

 
 
 

 
Biconnected 
Components 

 
 
 
 

Articulation Point 

Bridge 
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 Articulation Points by Depth First Search: 
 
Determining the articulation turns out to be a simple extension of depth first search. 
Consider a depth first spanning tree for this graph. 

 

 

Observations 1, 2, and 3 provide us with a structural characterization of which  

vertices in the DFS tree are articulation points. 
 
Deleting node E does not disconnect the graph because G and D both have dotted 
links (back edges) that point above E, giving alternate paths from them to F. On the 
other hand, deleting G does disconnect the graph because there are no such alternate 
paths from L or H to E (G’s parent). 

 

A vertex ‘x’ is not an articulation point if every child ‘y’ has some node lower in the 
tree connect (via a dotted link) to a node higher in the tree than ‘x’, thus providing an 
alternate connection from ‘x’ to ‘y’. This rule will not work for the root node since 
there are no nodes higher in the tree. The root is an articulation point if it has two or 
more children. 

 
Depth First Spanning Tree for the above graph is: 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

By using the above observations the articulation points of this graph are: 

A  : because it connects B to the rest of the graph. 
H  : because it connects I to the rest of the graph. 
J  : because it connects K to the rest of the graph. 
G  : because the graph would fall into three pieces if G is deleted. 

Biconnected components are: {A, C, G, D, E, F}, {G, J, L, M}, B, H, I and K 

A H I 

B C G 

J K 

D 

E 

F L M 
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This observation leads to a simple rule to identify articulation points. For each is 
define L (u) as follows: 

 
L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  (u, w)  

is a back edge}}. 
 
L (u) is the lowest depth first number that can be reached from ‘u’ using a path of 
descendents followed by at most one back edge. It follows that, If ‘u’ is not the root 
then ‘u’ is an articulation point iff ‘u’ has a child ‘w’ such that: 

 
L (w) ≥ DFN (u) 

 
 

6.6.2. Algorithm for finding the Articulation points: 
 
Pseudocode to compute DFN and L. 

 
Algorithm Art (u, v) 

// u is a start vertex for depth first search. V is its parent if any  in the depth first 
// spanning tree. It is assumed that the global array dfn is initialized to zero and that // the 
global variable num is initialized to 1. n is the number of vertices in G. 
{ 

dfn [u] := num; L [u] := num; num := num + 1; 
for each vertex w adjacent from u do 
{ 

if (dfn [w] = 0) then 
{ 

Art (w, u); // w is unvisited. 
L [u] := min (L [u], L [w]); 

} 
else if (w  v) then L [u] := min (L [u], dfn [w]); 
} 

} 

 
 

6.6.1. Algorithm for finding the Biconnected Components: 
 
Algorithm BiComp (u, v) 

// u is a start vertex for depth first search. V is its parent if any in the depth first 
// spanning tree. It is assumed that the global array dfn is initially zero and that the 

// global variable num is initialized to 1. n is the number of vertices in G. 
{ 

dfn [u] := num; L [u] := num; num := num + 1; 
for each vertex w adjacent from u do 
{ 

if ((v  w) and (dfn [w] < dfn [u])) then 
add (u, w) to the top of a stack s; 

if (dfn [w] = 0) then 
{ 

if (L [w] > dfn [u]) then 
{ 

write (“New bicomponent”); 
repeat 
{ 

Delete an edge from the top of stack s; 
Let this edge be (x, y); 
Write (x, y); 

} until (((x, y) = (u, w)) or ((x, y) = (w, u))); 

} 
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8  6 

1  1 5  7 

4 6  2 7 

3  3 8   1 0 

1 0 9  5 

BiComp (w, u); // w is unvisited. 
L [u] := min (L [u], L [w]); 

} 
else if (w  v) then L [u] : = min (L [u], dfn [w]); 

} 
} 

 
 

6.7.1. Example: 
 
For the following graph identify the articulation points and Biconnected components: 

 

 
 
 
 
 

2 9 

 
 

4 

4 

 

Grap h 
 

 
 

 

Dept h Fi rst Sp an ni ng Tree 

 

To identify the articulation points, we use: 
 

L  (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex 

to which there is back edge from u}} 
 
 

L  (1) = min {DFN (1), min {L (4)}} = min {1, L (4)} = min {1, 1} = 1 
 
L  (4) = min {DFN (4), min {L (3)}} = min {2, L (3)} = min {2, 1} = 1 

 

L  (3) = min {DFN (3), min {L (10), L (9), L (2)}} = 
= min {3, min {L (10), L (9), L (2)}} = min {3, min {4, 5, 1}} = 1 

 

L (10) = min {DFN (10)} = 4 
 

L (9)  = min {DFN (9)} = 5 
 

L  (2) = min {DFN (2), min {L (5)}, min {DFN (1)}} 
= min {6, min {L (5)}, 1} = min {6, 6, 1} = 1 

 

L  (5) = min {DFN (5), min {L (6), L (7)}} = min {7, 8, 6} = 6 
 
L  (6) = min {DFN (6)} = 8 
L  (7) = min {DFN (7), min {L (8}, min {DFN (2)}} 

= min {9, L (8) , 6} = min {9, 6, 6} = 6 

 
L  (8) = min {DFN (8), min {DFN (5), DFN (2)}} 

1  1 

2  4 

 

3  3 

 
 

1  0 5    9 6  2 

 
 

7  5 

8  6 7 9 

8   1 0 
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= min {10, min (7, 6)} = min {10, 6} = 6 
 
Therefore, L (1: 10) = (1, 1, 1, 1, 6, 8, 6, 6, 5, 4) 

 

 

Finding the Articulation Points: 
 
Vertex 1: Vertex 1 is not an articulation point. It is a root node. Root is an articulation 

point if it has two or more child nodes. 
 
Vertex 2: is an articulation point as child 5 has L (5) = 6 and DFN (2) = 6, 

So, the condition L (5) = DFN (2) is true. 

 
Vertex 3: is an articulation point as child 10 has L (10) = 4 and DFN (3) = 3, 

So, the condition L (10) > DFN (3) is true. 
 

Vertex 4: is not an articulation point as child 3 has L (3) = 1 and DFN (4) = 2, 
So, the condition L (3) > DFN (4) is false. 

 

Vertex 5: is an articulation point as child 6 has L (6) = 8, and DFN (5) = 7, 
So, the condition L (6) > DFN (5) is true. 

 

Vertex 7: is not an articulation point as child 8 has L (8) = 6, and DFN (7) = 9, 
So, the condition L (8) > DFN (7) is false. 

 

Vertex 6, Vertex 8, Vertex 9 and Vertex 10 are leaf nodes. 
 

Therefore, the articulation points are {2, 3, 5}. 
 
 

 Example: 

 
For the following graph identify the articulation points and Biconnected components: 

 

 
1 

 
2 

 
 
 

G ra p h 

 
 

 
D F S s p a n ni n g T re e 

1 
4 

2  3 7  8 

5 6 

1 

2 3  3 

4    5 5  6 4  6 

7  7 

8  8 
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V ert e x 
 

1   2     

2   1   3 

3   2   5   6   4  

              
4   3   7   8     
 

5 
   

3 
          

6    

3 
          

7   4   8        

8   4   7        
 

Adj ac enc y List 
 

 
 

L  (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex 
to which there is back edge from u}} 

 

L (1) = min {DFN (1), min {L (2)}} = min {1, L (2)} = min {1, 2} = 1 

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min {2, 3} = 2 

L (3) = min {DFN (3), min {L (4), L (5), L (6)}} = min {3, min {6, 4, 5}} = 3 

L (4) = min {DFN (4), min {L (7)} = min {6, L (7)} = min {6, 6} = 6 

L (5) = min {DFN (5)} = 4 

L (6) = min {DFN (6)} = 5 

L (7) = min {DFN (7), min {L (8)}} = min {7, 6} = 6 

L (8) = min {DFN (8), min {DFN (4)}} = min {8, 6} = 6 
 

Therefore, L (1: 8) = {1, 2, 3, 6, 4, 5, 6, 6} 
 
 

Finding the Articulation Points: 

Check for the condition if L (w) > DFN (u) is true, where w is any child of u. 

Vertex 1: Vertex 1 is not an articulation point. 
It is a root node. Root is an articulation point if it has two or more child 
nodes. 

 
Vertex 2: is an articulation point as L (3) = 3 and DFN (2) = 2. 

So, the condition is true 

 
Vertex 3: is an articulation Point as: 

I. L (5) = 4 and DFN (3) = 3 
II. L (6) = 5 and DFN (3) = 3 and 

III. L (4) = 6 and DFN (3) = 3 

So, the condition true in above cases 
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2 4 5 

Vertex 4: is an articulation point as L (7) = 6 and DFN (4) = 6. 
So, the condition is true 

 
Vertex 7: is not an articulation point as L (8) = 6 and DFN (7) = 7. 

So, the condition is False 

 
Vertex 5, Vertex 6 and Vertex 8 are leaf nodes. 

Therefore, the articulation points are {2, 3, 4}. 

 
Example: 

 
For the following graph identify the articulation points and Biconnected components: 

 
1  1 

 

2  2 

 

3  3 

 

4  4 

 

5   5 7  8 

 

Graph 6  6 Depth First 
Spanning Tree 

 
7  8 

 

DFN (1: 8) = {1, 2, 3, 4, 5, 6, 8, 7} 

 
V ert e x 

 

1 

 
2   1   3     

3   2   4   7 

          
4   1   3   5   6   7   8 

           
5   1   4   6 

6   4   5   8 

7    

3    

4    

 

8 
   

4 
   

6 
   

 

Adj ac enc y List 
 

 
L  (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex 

to which there is back edge from u}} 
 

L  (1) = min {DFN (1), min {L (2)}} 

= min {1, L (2)} = 1 

 
L  (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min{2, 1}= 11 

5 

1 

6 

2 4 

8 

3 

7 
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L (3)   = min {DFN (3), min {L (4)}} = min {3, L (4)} = min {3, L (4)} 
= min {3, 1} = 1 

 
L (4)   = min {DFN (4), min {L (5), L (7)}, min {DFN (1)}} 

= min {4, min {L (5), L (7)}, 1} = min {4, min {1, 3}, 1} 
= min {4, 1, 1} = 1 

 
L (5)   = min {DFN (5), min {L (6)}, min {DFN (1)}} = min {5, L (6), 1} 

= min {5, 4, 1} = 1 

 
L (6)   = min {DFN (6), min {L (8)}, min {DFN (4)}} = min(6, L (8), 4} 

= min(6, 4, 4} = 4 

 
L (7)   = min {DFN (7), min {DFN (3)}} = min {8, 3} = 3 

 

L (8)   = min {DFN (8), min {DFN (4)}} = min {7, 4} = 4 
 
Therefore, L (1: 8) = {1, 1, 1, 1, 1, 4, 3, 4} 

 
 
Finding the Articulation Points: 

Check for the condition if L (w) > DFN (u) is true, where w is any child of u. 

Vertex 1: is not an articulation point. 

It is a root node. Root is an articulation point if it has two or more child 
nodes. 

 
Vertex 2: is not an articulation point. As L (3) = 1 and DFN (2) = 2. 

So, the condition is False. 

 
Vertex 3: is not an articulation Point as L (4) = 1 and DFN (3) = 3. 

So, the condition is False. 

 

Vertex 4: is not an articulation Point as: 
L (3) = 1 and DFN (2) = 2 and 
L (7) = 3 and DFN (4) = 4 

So, the condition fails in both cases. 

 
Vertex 5: is not an Articulation Point as L (6) = 4 and DFN (5) = 6. 

So, the condition is False 

 
Vertex 6: is not an Articulation Point as L (8) = 4 and DFN (6) = 7. 

So, the condition is False 

Vertex 7: is a leaf node. 

Vertex 8: is a leaf node. 
 
So they are no articulation points. 

 
 

 GAME PLAYING 
 
In game-playing literature, the term play is used for a move. The two major components 
of game-playing program are plausible move generator, and a static evaluation function 
generator. 
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In a game of chess, for every move a player makes, the average branching factor is 35, 
that is the opponent can make 35 different moves. It may not be possible to examine all 
the states because the amount of time given for a move is limited and the amount of 
computational power available for examining various states is also limited. Hence it is 

essential that only very selected moves or paths are examined. For this purpose only, 
one has a plausible move generator, that expands or generates only selected moves. 

 
Static Evaluation function generator (SEF) is the most important component of the 
game-playing program. The process of computing a number that reflects board quality is 
called static evaluation. The procedure that does the computation is called a static 
evaluator. A static evaluation function, is defined as the one that estimates the value of 

the board position without looking any of that position's successors. 
 
The SEF gives a snapshot of a particular move. More the SEF value, more is the 
probability for a victory. Games can be classified as either a single person playing or 
multi-person playing. For single person games (for example, Rubik's cube, 8-tile puzzle 
etc.) search strategies such as Best-first branch and bound algorithm can be used. 

 

On the other hand, in a two-person games like chess, checkers etc., each player tries to 
outsmart the opponent. Each has their own way of evaluating the situation and since 
each player tries to obtain the maximum benefits, best first search branch and bound 
algorithm do not serve the purpose. The basic methods available for game playing are: 

 

1. Minimax search. 
2. Minimax search with alpha beta cutoffs. 

 
 

 MINIMAX SEARCH 
 
The standard algorithm for two-player games is called minimax search with static 
evaluation. We have to add more knowledge to improve search and to reduce the 

complexity. Heuristic search adds a small amount of knowledge to a problem space, 
giving, surprisingly, a fairly dramatic effect of the efficiency of search algorithm. A good 
heuristic is to select roads that go in the direction of the goal. In this case we call it as 
heuristic static evaluation function that takes a board position and returns a number that 
indicates how favorable that position is to one player or other. We call our players as 
MAX and MIN. 

 
The large positive values would correspond to strong positions for one player whereas 
large negative values would represent advantageous situations for the opponent. 

 

The player for whom large positive values are advantageous is called the MAX, and 
conversely the opponent is referred to as MIN. The value of a node where it is MAX's 
turn to move is maximum of the values of its children, while the value of a node where 
MIN is to move is the minimum of the values of its children. 

 
MAX represents the player trying to win, or to MAXimize his/her advantage. MIN, the 
opponent attempts to MINimize MAX's score. (i.e. we can assume that MIN uses the 
same information and always attempts to move to a state that is worst for MAX). 

 
At alternate levels of tree, the minimum and the maximum values of the children are 
backedup. The backingup values is done as follows: The (MAX node) parent of MIN tip 

nodes is assigned a backedup value equal to the maximum of the evaluations of the tip 
nodes, on the other hand, if MIN were to choose among tip nodes, he will choose that 
having the smallest evaluation (the most negative). Therefore, the (MIN node), parent 
of MAX tip nodes is assigned a backedup value equal to the minimum of the evaluation 
of the tip nodes. 
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M IN 

M A X 

7 

2 -  1 -  1 -  1 -  1-  1 

After the parents of all tip nodes have been assigned backedup values, we backup 
values another level, assuming that MAX would choose that node with largest backedup 
value, while MIN would choose that node with smallest backedup value. 

 

We continue the procedure level by level, until finally, the successors of the start node 
are assigned backedup values. The search algorithm then uses these derived values to 
select among possible next moves. 

 

Backingup the values of a 2 - ply  search 

The best first move can be extracted from minimax procedure after search terminates. 
 
 

 EXAMPLE 
 
To illustrate these ideas, let us consider a simple game called "Grundy's game". The 

rules of the game are as follows: Two players have in front of them a single pile of 7 
matches. At each move the player must divide a pile of matches into two non-empty 
piles with different numbers of matches in each pile. Thus, 6 matches may be divided 
into piles of 5 and 1 or 4 and 2, but not 3 and 3. The first player who can no longer 
make a move loses the game. The following figure shows the space for a game with 7 
matches and let MIN play first: 

 

 
 
 
 
 

M A X 6 -  1  5 -  2 4 -  3 

     

M IN 5 -  1 -  1 4 -  2 - 1 3 -  2 -  2 3 -  3 -  1 

     

M A X  

 
4 -  1 -  1 - 

1 3 -  2 -  1 -  1 2 -  2 -  2 -  1 

     
M IN 

3 - 1 -  1 - 1  -  1 2 -  2 -  1 - 1 -  1 

 
 
 
 

A GA M E G RA P H F O R G R U N DY S GA M E 

 
We can also use the game tree to show that, no matter what min does max can always 
win. A winning strategy for max is shown by heavy lines. Max, can always force the 
game to a win, regardless of min’s first move. Min could win only if max played foolishly. 

A -2 MAX 

B -6 C -2 D -4 MIN 

E F G 

9 -6 0 

H I 

0 -2 

J 

-4 

K 

-3 

MAX 
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6.8.     ALPHA-BETA PRUNING 
 
The minimax pursues all branches in the space, including many that can be ignored or 
pruned by a more intelligent algorithm. Researchers in game playing have developed a 

class of search technique called Alpha-beta pruning to improve the efficiency of search in 
two-person games. 

 
The idea for alpha-beta search is simple: Two values called alpha and beta are created 
during the search. The alpha value, associated with MAX nodes, can never decrease, and 
the beta value, associated with MIN nodes, can never increase. 

 

Suppose for example, MAX node's alpha value is 6, then MAX need not consider any 
backedup value less than or equal to 6 that is associated with any MIN node below it. 
Similarly, if MIN has a beta value of 6, it need not consider further any MAX node below 
it that has a value of 6 or more. 

 

Because of these constraints, we can state the following two rules for terminating the 
search: 

 

1. Search can be stopped below any MIN node having a beta value less than or 
equal to the alpha value of any of its MAX node ancestors. The final backedup 
value of this MIN node can then the set to its beta value. 

 

2. Search can be stopped below any MAX node having an alpha value greater than 
or equal to the beta value of any of its MIN node ancestors. The final backedup 
value of this MAX node can then be set to its alpha value. 

 

Figure given below shows an example of alpha-beta pruning. The search proceeds 
depth-first to minimise the memory requirement, and only evaluates a node when 
necessary. After statically evaluating nodes D and E to 6 and 5, respectively, we back up 
their maximum value, 6 as the value of node C. After statically evaluating node G as 8, 

we know that the backed up value of node F must be greater than or equal to 8, since it 
is the maximum of 8 and the unknown value node W. The value of node B must be 6 
then, because it is the maximum of 6 and a value that must be greater than or equal to 
8. Since we have exactly determined the value of node B, we do not need to evaluate or 
even generate node W. This is called an ALPHA CUTOFF. 

 

Similarly, after statically evaluating nodes J and K to 2 and 1, the backed up value is 

their maximum or 2. This tells that the backed up value of node H must be less than or 
equal to 2, since it the minimum of 2 and the unknown value of node X. Since the value 
of node A is the maximum of 6 and a value that must be less than or equal to 2, it must 
be 6, and hence we have evaluated the root of the tree without generating or evaluating 
the nodes X, Y or Z. This is called BETA CUTOFF. 

 

The whole process of keeping track of alpha and beta values and making cutoff's when 
possible is called as alpha-beta procedure. 
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3 

2 3 

 
Alpha - Beta Pruning 

 
 

6.8.1. EXAMPLE 2: 
 

Taking the space of figure as shown below and when alpha-beta pruning applied 
is on this problem, is as follows: 

 
 

3 
      

3 

 
C 

   

M a x 

           
3 0 2  3 A 0  D 2 E M in 

 

9

 

0 

 
 

5 9

 0 

 
7 2 6 

 
 

7 4 2 1 5 6 

  

 
3 

 

 
2 3 5 

 
 

B 0 

 
 

0 

 
 

2 M a x 

 

 
2 1 M in 

Hy p ot h et ic a l st at e s p ac e t o  min i ma x A lp h a - Bet a Pru n in g 

 
A has β = 3 (A will be no larger than 3). 
B is β pruned, since 5 > 3. 
C has α = 3 (C will be no smaller than 3). 
D is α pruned, since 0 < 3. 
E is α pruned, since 2 < 3. 

C is 3. 
 
 

 AND/OR GRAPH: 
 
And/or graph is a specialization of hypergraph which connects nodes by sets of arcs 
rather than by a single arcs. A hypergraph is defined as follows: 

 

A hypergraph consists of: 

N, a set of nodes, 

H, a set of hyperarcs defined by ordered pairs, in which the first implement of 

the pair is a node of N and the second implement is the subset of N. 
 

An ordinary graph is a special case of hypergraph in which all the sets of decendent 
nodes have a cardinality of 1. 

A   6 

B   6 2 H<=2 

C      6 F>=8 8 I 2 X 

6 5 8 2 1 

D E G W J K Y Z 
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Hyperarcs also known as K-connectors, where K is the cardinality of the set of 
decendent nodes. If K = 1, the descendent may be thought of as an OR nodes. If K > 
1, the elements of the set of decendents may be thought of as AND nodes. In this  
case the connector is drawn with individual edges from the parent node to each of the 

decendent nodes; these individual edges are then joined with a curved link. 
 
And/or graph for the expression P and Q -> R is follows: 

 
 

E xpre s s io n f or P a n d Q - > R A K- C o n n ec t or 

 
 

The K-connector is represented as a fan of arrows with a single tie is shown above. 
 

The and/or graphs consists of nodes labelled by global databases. Nodes labelled by 
compound databases have sets of successor nodes. These successor nodes are called 
AND nodes, in order to process the compound database to termination, all the 

compound databases must be processed to termination. 
 
For example consider, consider a boy who collects stamps (M). He has for the purpose 
of exchange a winning conker (C), a bat (B) and a small toy animal (A). In his class 
there are friends who are also keen collectors of different items and will make the 
following exchanges. 

 

1. 1 winning conker (C) for a comic (D) and a bag of sweets (S). 

2. 1 winning conker (C) for a bat (B) and a stamp (M). 

3. 1 bat (B) for two stamps (M, M). 

4. 1 small toy animal (A) for two bats (B, B) and a stamp (M). 
 

The problem is how to carry out the exchanges so that all his exchangable items are 
converted into stamps (M). This task can be expressed more briefly as: 

 
1. Initial state = (C, B, A) 

 

2. Transformation rules: 

a. If C then (D, S) 

b. If C then (B, M) 

c. If B then (M, M) 

d. If A then (B, B, M) 

 
3. The goal state is to left with only stamps (M, . . . . . . , M) 

R 

P Q 

N1 

N2  

N 

 

 
Nk  
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Expansion for the exchange problem using OR connectors only 

The figure shows that, a lot of extra work is done by redoing many of the 
transformations. This repetition can be avoided by decomposing the problem into 
subproblems. There are two major ways to order the components: 

 

1. The components can either be arranged in some fixed order at the time 
they are generated (or). 

2. They can be dynamically reordered during processing. 

 
The more flexible system is to reorder dynamically as the processing unfolds. It can 
be represented by and/or graph. The solution to the exchange problem will be: 

 

Swap conker for a bat and a stamp, then exchange this bat for two stamps. 
Swap his own bat for two more stamps, and finally swap the small toy animal 
for two bats and a stamp. The two bats can be exchanged for two stamps. 

 
The previous exchange problem, when implemented as an and/or graph looks as 
follows: 

 

The exchange problem as an AND/OR graph 

(C, B, A) 

(D S B A) (B M B A) (C M M A) (C B B B M) 

(D S M M A) (M M M B A) (B M M M A) (B M B B B M) 

(D S M M B B M) (M M M M M A) (M M M M M A) (M M M B B B M) 

(D S M M M M B M) (M M M M M B B M) 

(D S M M M M M M M) (M M M M M M M B M) 

(M M M M M M M M    M M) GOAL 

(C B A) 

(C) (B) (A) 

(D S) (B M) (M M) (B B M) 

(D) (S) (B) ((M)) ((M)) ((M)) (B) (B) ((M)) 

(M M) (M M) (M M) 

((M)) ((M)) ((M)) ((M))   ((M))   ((M)) 
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 Example 1: 
 
Draw an And/Or graph for the following prepositions: 

 

1. A 
2. B 
3. C 
4. A ^ B -> D 
5. A ^ C -> E 
6. B ^ D -> F 
7. F -> G 

8. A ^ E -> H 

 
A 

H 

B 

F 

C 

E D 

G 
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