
LECTURE NOTES ON

DESIGN AND ANALYSIS OF ALGORITHMS

Department of Computer Science and Engineering

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

I

CONTENTS

CHAPTER 1 BASIC CONCEPTS

Algorithm
Performance of Programs
Algorithm Design Goals
Classification of Algorithms
Complexity of Algorithms
Rate of Growth

Analyzing Algorithms
The Rule of Sums

The Rule of products
The Running time of Programs
Measuring the running time of programs
Asymptotic Analyzing of Algorithms
Calculating the running time of programs

General rules for the analysis of programs

CHAPTER 2 Advanced Data Structures and Recurrence Relations

Priority Queue, Heap and Heap sort
Heap Sort

2.3 Priority Queue implementation using heap tree

Binary Search trees
Balanced Trees
Dictionary
Disjoint Set Operations
Recurrence Relations – Iterative Substitution Method
Recursion Tree
The Guess-and test
The Master Theorem Method
Cold Form expression
Solving Recurrence relations

CHAPTER 3 Divide And Conquer

General Method
Control Abstraction of Divide and Conquer
Binary Search
External and Internal path length
Merge Sort
Strassen’s Matrix Multiplication
Quick Sort

Straight Insertion Sort

CHAPTER 4 Greedy Method

4.1 General Method
Control Abstraction
Knapsack Problem
Optimal Storage on Tapes
Job Sequencing with deadlines
Optimal Merge Patterns

Huffman Codes

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

II

Graph Algorithms

CHAPTER 5 Dynamic programming

Multi Storage graphs
All Pairs Shortest paths
Traveling Sales Person problem
Optimal Binary Search Tree
0/1 Knapsack
Reliability design

CHAPTER 6 Basic Traversal and Search Techniques

Techniques for traversal of Binary tree
Techniques for graphs
Representation of Graph and Digraphs
Depth First and Breadth First Spanning trees
Articulation Points and bi-connected components

Articulation points by Depth First Search
Game planning
Alpha-Beta pruning
AND/OR Graphs

CHAPTER 7 Backtracking

General method
Terminology
N-Queens problem
Sum of Subsets
Graph Coloring(for planar graphs)
Hamiltonian Cycles

0/1 Knapsack
Traveling Sales Person using Backtracking

CHAPTER 8 Branch and Bound

General method
Least Cost (LC) Search
Control Abstraction for LC-Search
Bounding
The 15-Puzzle problem
LC Search for 15-Puzzle Problem
Job Sequencing with deadlines
Traveling Sales Person problem
0/1 Knapsack

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

1

Chapter

1

Basic Concepts

Algorithm

An Algorithm is a finite sequence of instructions, each of which has a clear meaning
and can be performed with a finite amount of effort in a finite length of time. No
matter what the input values may be, an algorithm terminates after executing a finite
number of instructions. In addition every algorithm must satisfy the following
criteria:

Input: there are zero or more quantities, which are externally supplied;

Output: at least one quantity is produced;

Definiteness: each instruction must be clear and unambiguous;

Finiteness: if we trace out the instructions of an algorithm, then for all cases

the algorithm will terminate after a finite number of steps;

Effectiveness: every instruction must be sufficiently basic that it can in
principle be carried out by a person using only pencil and paper. It is not
enough that each operation be definite, but it must also be feasible.

In formal computer science, one distinguishes between an algorithm, and a program.
A program does not necessarily satisfy the fourth condition. One important example
of such a program for a computer is its operating system, which never terminates
(except for system crashes) but continues in a wait loop until more jobs are entered.

We represent algorithm using a pseudo language that is a combination of the
constructs of a programming language together with informal English statements.

Performance of a program:

The performance of a program is the amount of computer memory and time needed
to run a program. We use two approaches to determine the performance of a
program. One is analytical, and the other experimental. In performance analysis we
use analytical methods, while in performance measurement we conduct experiments.

Time Complexity:

The time needed by an algorithm expressed as a function of the size of a problem is
called the time complexity of the algorithm. The time complexity of a program is the
amount of computer time it needs to run to completion.

The limiting behavior of the complexity as size increases is called the asymptotic time
complexity. It is the asymptotic complexity of an algorithm, which ultimately
determines the size of problems that can be solved by the algorithm.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

2

Space Complexity:

The space complexity of a program is the amount of memory it needs to run to
completion. The space need by a program has the following components:

Instruction space: Instruction space is the space needed to store the compiled
version of the program instructions.

Data space: Data space is the space needed to store all constant and variable
values. Data space has two components:

 Space needed by constants and simple variables in program.

 Space needed by dynamically allocated objects such as arrays and class
instances.

Environment stack space: The environment stack is used to save information
needed to resume execution of partially completed functions.

Instruction Space: The amount of instructions space that is needed depends on
factors such as:

 The compiler used to complete the program into machine code.

 The compiler options in effect at the time of compilation

 The target computer.

 Algorithm Design Goals

The three basic design goals that one should strive for in a program are:

1. Try to save Time
2. Try to save Space
3. Try to save Face

A program that runs faster is a better program, so saving time is an obvious

goal. Like wise, a program that saves space over a competing program is considered
desirable. We want to “save face” by preventing the program from locking up or
generating reams of garbled data.

 Classification of Algorithms

If ‘n’ is the number of data items to be processed or degree of polynomial or the size
of the file to be sorted or searched or the number of nodes in a graph etc.

1 Next instructions of most programs are executed once or at most only a

few times. If all the instructions of a program have this property, we say
that its running time is a constant.

Log n When the running time of a program is logarithmic, the program gets

slightly slower as n grows. This running time commonly occurs in
programs that solve a big problem by transforming it into a smaller
problem, cutting the size by some constant fraction., When n is a million,
log n is a doubled. Whenever n doubles, log n increases by a constant,

but log n does not double until n increases to n2.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

3

n When the running time of a program is linear, it is generally the case that
a small amount of processing is done on each input element. This is the
optimal situation for an algorithm that must process n inputs.

n. log n This running time arises for algorithms that solve a problem by breaking
it up into smaller sub-problems, solving then independently, and then
combining the solutions. When n doubles, the running time more than
doubles.

n2 When the running time of an algorithm is quadratic, it is practical for use
only on relatively small problems. Quadratic running times typically arise

in algorithms that process all pairs of data items (perhaps in a double
nested loop) whenever n doubles, the running time increases four fold.

n3 Similarly, an algorithm that process triples of data items (perhaps in a
triple–nested loop) has a cubic running time and is practical for use only
on small problems. Whenever n doubles, the running time increases eight
fold.

2n Few algorithms with exponential running time are likely to be appropriate
for practical use, such algorithms arise naturally as “brute–force”
solutions to problems. Whenever n doubles, the running time squares.

Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time
and/or storage space requirement of the algorithm in terms of the size ‘n’ of the
input data. Mostly, the storage space required by an algorithm is simply a multiple of
the data size ‘n’. Complexity shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the
size ‘n’ of the input data but also on the particular data. The complexity function f(n)
for certain cases are:

1. Best Case : The minimum possible value of f(n) is called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

The field of computer science, which studies efficiency of algorithms, is known as
analysis of algorithms.

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested
in the rate of growth of the time or space required to solve larger and larger
instances of a problem. We will associate with the problem an integer, called the size
of the problem, which is a measure of the quantity of input data.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

4

 Rate of Growth:

The following notations are commonly use notations in performance analysis and
used to characterize the complexity of an algorithm:

1. Big–OH (O) 1,
2. Big–OMEGA (),
3. Big–THETA () and

4. Little–OH (o)

Big–OH O (Upper Bound)

f(n) = O(g(n)), (pronounced order of or big oh), says that the growth rate of f(n) is
less than or equal (<) that of g(n).

Big–OMEGA (Lower Bound)

f(n) = (g(n)) (pronounced omega), says that the growth rate of f(n) is greater
than or equal to (>) that of g(n).

1 In 1892, P. Bachmann invented a notation for characterizing the asymptotic behavior of
functions. His invention has come to be known as big oh notation.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

5

Big–THETA (Same order)

f(n) = (g(n)) (pronounced theta), says that the growth rate of f(n) equals (=) the
growth rate of g(n) [if f(n) = O(g(n)) and T(n) = (g(n)].

Little–OH (o)

T(n) = o(p(n)) (pronounced little oh), says that the growth rate of T(n) is less than
the growth rate of p(n) [if T(n) = O(p(n)) and T(n) (p(n))].

 Analyzing Algorithms

Suppose ‘M’ is an algorithm, and suppose ‘n’ is the size of the input data. Clearly the
complexity f(n) of M increases as n increases. It is usually the rate of increase of f(n)
we want to examine. This is usually done by comparing f(n) with some standard
functions. The most common computing times are:

O(1), O(log2 n), O(n), O(n. log2 n), O(n2), O(n3), O(2n), n! and nn

Numerical Comparison of Different Algorithms

The execution time for six of the typical functions is given below:

n log2 n n*log2n n2 n3 2n

1 0 0 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65,536

32 5 160 1024 32,768 4,294,967,296

64 6 384 4096 2,62,144 Note 1

128 7 896 16,384 2,097,152 Note 2

256 8 2048 65,536 1,677,216 ????????

Note1: The value here is approximately the number of machine instructions
executed by a 1 gigaflop computer in 5000 years.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

6

Note 2: The value here is about 500 billion times the age of the universe in
nanoseconds, assuming a universe age of 20 billion years.
Graph of log n, n, n log n, n2, n3, 2n, n! and nn

O(log n) does not depend on the base of the logarithm. To simplify the analysis, the
convention will not have any particular units of time. Thus we throw away leading
constants. We will also throw away low–order terms while computing a Big–Oh
running time. Since Big-Oh is an upper bound, the answer provided is a guarantee

that the program will terminate within a certain time period. The program may stop
earlier than this, but never later.

One way to compare the function f(n) with these standard function is to use the
functional ‘O’ notation, suppose f(n) and g(n) are functions defined on the positive
integers with the property that f(n) is bounded by some multiple g(n) for almost all
‘n’. Then,

f(n) = O(g(n))

Which is read as “f(n) is of order g(n)”. For example, the order of complexity for:

 Linear search is O (n)

 Binary search is O (log n)

 Bubble sort is O (n2)

 Merge sort is O (n log n)

 The rule of sums

Suppose that T1(n) and T2(n) are the running times of two programs fragments P1

and P2, and that T1(n) is O(f(n)) and T2(n) is O(g(n)). Then T1(n) + T2(n), the
running time of P1 followed by P2 is O(max f(n), g(n)), this is called as rule of sums.

For example, suppose that we have three steps whose running times are respectively
O(n2), O(n3) and O(n. log n). Then the running time of the first two steps executed
sequentially is O (max(n2, n3)) which is O(n3). The running time of all three
together is O(max (n3, n. log n)) which is O(n3).

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

7

 The rule of products

If T1(n) and T2(n) are O(f(n) and O(g(n)) respectively. Then T1(n)*T2(n) is O(f(n)
g(n)). It follows term the product rule that O(c f(n)) means the same thing as O(f(n))
if ‘c’ is any positive constant. For example, O(n2/2) is same as O(n2).

Suppose that we have five algorithms A1–A5 with the following time complexities:

A1 : n
A2 : n log n
A3 : n2

A4: n3

A5: 2n

The time complexity is the number of time units required to process an input of size
‘n’. Assuming that one unit of time equals one millisecond. The size of the problems
that can be solved by each of these five algorithms is:

Algorithm Time
complexity

Maximum problem size

1 second 1 minute 1 hour

A1 n 1000 6 x 104
 3.6 x 106

A2 n log n 140 4893 2.0 x 105

A3
n2 31 244 1897

A4
n3 10 39 153

A5 2n 9 15 21

The speed of computations has increased so much over last thirty years and it might
seem that efficiency in algorithm is no longer important. But, paradoxically, efficiency
matters more today then ever before. The reason why this is so is that our ambition
has grown with our computing power. Virtually all applications of computing
simulation of physical data are demanding more speed.

The faster the computer run, the more need are efficient algorithms to take
advantage of their power. As the computer becomes faster and we can handle larger
problems, it is the complexity of an algorithm that determines the increase in
problem size that can be achieved with an increase in computer speed.

Suppose the next generation of computers is ten times faster than the current
generation, from the table we can see the increase in size of the problem.

Algorithm

Time
Complexity

Maximum problem size
before speed up

Maximum problem size
after speed up

A1 n S1 10 S1

A2 n log n S2 10 S2 for large S2

A3
n2 S3 3.16 S3

A4
n3 S4 2.15 S4

A5 2n S5 S5 + 3.3

Instead of an increase in speed consider the effect of using a more efficient
algorithm. By looking into the following table it is clear that if minute as a basis for
comparison, by replacing algorithm A4 with A3, we can solve a problem six times
larger; by replacing A4 with A2 we can solve a problem 125 times larger. These

results are for more impressive than the two fold improvement obtained by a ten fold
increase in speed. If an hour is used as the basis of comparison, the differences are
even more significant.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

8

We therefore conclude that the asymptotic complexity of an algorithm is an
important measure of the goodness of an algorithm.

 The Running time of a program

When solving a problem we are faced with a choice among algorithms. The basis for
this can be any one of the following:

i. We would like an algorithm that is easy to understand, code and debug.

ii. We would like an algorithm that makes efficient use of the computer’s

resources, especially, one that runs as fast as possible.

 Measuring the running time of a program

The running time of a program depends on factors such as:

1. The input to the program.

2. The quality of code generated by the compiler used to create the object
program.

3. The nature and speed of the instructions on the machine used to execute the
program, and

4. The time complexity of the algorithm underlying the program.

The running time depends not on the exact input but only the size of the input. For
many programs, the running time is really a function of the particular input, and not

just of the input size. In that case we define T(n) to be the worst case running time,
i.e. the maximum overall input of size ‘n’, of the running time on that input. We also
consider Tavg(n) the average, over all input of size ‘n’ of the running time on that
input. In practice, the average running time is often much harder to determine than
the worst case running time. Thus, we will use worst–case running time as the
principal measure of time complexity.

Seeing the remarks (2) and (3) we cannot express the running time T(n) in standard
time units such as seconds. Rather we can only make remarks like the running time

of such and such algorithm is proportional to n2. The constant of proportionality will
remain un-specified, since it depends so heavily on the compiler, the machine and
other factors.

 Asymptotic Analysis of Algorithms:

Our approach is based on the asymptotic complexity measure. This means that we
don’t try to count the exact number of steps of a program, but how that number
grows with the size of the input to the program. That gives us a measure that will
work for different operating systems, compilers and CPUs. The asymptotic complexity
is written using big-O notation.

Rules for using big-O:

The most important property is that big-O gives an upper bound only. If an algorithm
is O(n2), it doesn’t have to take n2 steps (or a constant multiple of n2). But it can’t

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

9

take more than n2. So any algorithm that is O(n), is also an O(n2) algorithm. If this
seems confusing, think of big-O as being like "<". Any number that is < n is also <

n2.
1. Ignoring constant factors: O(c f(n)) = O(f(n)), where c is a constant; e.g.

O(20 n3) = O(n3)

2. Ignoring smaller terms: If a<b then O(a+b) = O(b), for example O(n2+n)

= O(n2)

3. Upper bound only: If a<b then an O(a) algorithm is also an O(b)

algorithm. For example, an O(n) algorithm is also an O(n2) algorithm (but
not vice versa).

4. n and log n are "bigger" than any constant, from an asymptotic view (that

means for large enough n). So if k is a constant, an O(n + k) algorithm is
also O(n), by ignoring smaller terms. Similarly, an O(log n + k) algorithm
is also O(log n).

5. Another consequence of the last item is that an O(n log n + n) algorithm,

which is O(n(log n + 1)), can be simplified to O(n log n).

Calculating the running time of a program:

Let us now look into how big-O bounds can be computed for some common

algorithms.

Example 1:

Let’s consider a short piece of source code:

x = 3*y + 2;
z = z + 1;

If y, z are scalars, this piece of code takes a constant amount of time, which we write
as O(1). In terms of actual computer instructions or clock ticks, it’s difficult to say
exactly how long it takes. But whatever it is, it should be the same whenever this

piece of code is executed. O(1) means some constant, it might be 5, or 1 or 1000.

Example 2:

2n2 + 5n – 6 = O (2n)

2n2 + 5n – 6 (2n)
2n2 + 5n – 6 = O (n3) 2n2 + 5n – 6 (n3)
2n2 + 5n – 6 = O (n2) 2n2 + 5n – 6 = (n2)
2n2 + 5n – 6 O (n) 2n2 + 5n – 6 (n)

2n2 + 5n – 6 (2n)

2n2 + 5n – 6 = o (2n)
2n2 + 5n – 6 (n3) 2n2 + 5n – 6 = o (n3)

2n2 + 5n – 6 = (n2) 2n2 + 5n – 6 o (n2)

2n2 + 5n – 6 = (n) 2n2 + 5n – 6 o (n)

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

10

Example 3:

If the first program takes 100n2 milliseconds and while the second takes 5n3

milliseconds, then might not 5n3 program better than 100n2 program?

As the programs can be evaluated by comparing their running time functions, with

constants by proportionality neglected. So, 5n3 program be better than the 100n2

program.

5 n3/100 n2 = n/20

for inputs n < 20, the program with running time 5n3 will be faster than those the
one with running time 100 n2. Therefore, if the program is to be run mainly on inputs
of small size, we would indeed prefer the program whose running time was O(n3)

However, as ‘n’ gets large, the ratio of the running times, which is n/20, gets

arbitrarily larger. Thus, as the size of the input increases, the O(n3) program will take

significantly more time than the O(n2) program. So it is always better to prefer a
program whose running time with the lower growth rate. The low growth rate
function’s such as O(n) or O(n log n) are always better.

Example 4:

Analysis of simple for loop

Now let’s consider a simple for loop:

for (i = 1; i<=n; i++)

v[i] = v[i] + 1;

This loop will run exactly n times, and because the inside of the loop takes constant

time, the total running time is proportional to n. We write it as O(n). The actual
number of instructions might be 50n, while the running time might be 17n
microseconds. It might even be 17n+3 microseconds because the loop needs some
time to start up. The big-O notation allows a multiplication factor (like 17) as well as
an additive factor (like 3). As long as it’s a linear function which is proportional to n,
the correct notation is O(n) and the code is said to have linear running time.

Example 5:

Analysis for nested for loop

Now let’s look at a more complicated example, a nested for loop:

for (i = 1; i<=n; i++)
for (j = 1; j<=n; j++)

a[i,j] = b[i,j] * x;

The outer for loop executes N times, while the inner loop executes n times for every

execution of the outer loop. That is, the inner loop executes n n = n2 times. The
assignment statement in the inner loop takes constant time, so the running time of
the code is O(n2) steps. This piece of code is said to have quadratic running time.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

11

2

Example 6:

Analysis of matrix multiply

Lets start with an easy case. Multiplying two n n matrices. The code to compute the
matrix product C = A * B is given below.

for (i = 1; i<=n; i++)

for (j = 1; j<=n; j++)
C[i, j] = 0;
for (k = 1; k<=n; k++)

C[i, j] = C[i, j] + A[i, k] * B[k, j];

There are 3 nested for loops, each of which runs n times. The innermost loop

therefore executes n*n*n = n3 times. The innermost statement, which contains a
scalar sum and product takes constant O(1) time. So the algorithm overall takes

O(n3) time.

Example 7:

Analysis of bubble sort

The main body of the code for bubble sort looks something like this:

for (i = n-1; i<1; i--)

for (j = 1; j<=i; j++)
if (a[j] > a[j+1])

swap a[j] and a[j+1];

This looks like the double. The innermost statement, the if, takes O(1) time. It
doesn’t necessarily take the same time when the condition is true as it does when it
is false, but both times are bounded by a constant. But there is an important
difference here. The outer loop executes n times, but the inner loop executes a
number of times that depends on i. The first time the inner for executes, it runs i =
n-1 times. The second time it runs n-2 times, etc. The total number of times the
inner if statement executes is therefore:

(n-1) + (n-2) + ... + 3 + 2 + 1

This is the sum of an arithmetic series.

N 1

i 1

(n i) n(n i)

n

n
2 2 2

The value of the sum is n(n-1)/2. So the running time of bubble sort is O(n(n-1)/2),
which is O((n2-n)/2). Using the rules for big-O given earlier, this bound simplifies to
O((n2)/2) by ignoring a smaller term, and to O(n2), by ignoring a constant factor.
Thus, bubble sort is an O(n2) algorithm.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

12

Example 8:

Analysis of binary search

Binary search is a little harder to analyze because it doesn’t have a for loop. But it’s
still pretty easy because the search interval halves each time we iterate the search.
The sequence of search intervals looks something like this:

n, n/2, n/4, ..., 8, 4, 2, 1

It’s not obvious how long this sequence is, but if we take logs, it is:

log2 n, log2 n - 1, log2 n - 2, ..., 3, 2, 1, 0

Since the second sequence decrements by 1 each time down to 0, its length must be
log2 n + 1. It takes only constant time to do each test of binary search, so the total
running time is just the number of times that we iterate, which is log2n + 1. So
binary search is an O(log2 n) algorithm. Since the base of the log doesn’t matter in an
asymptotic bound, we can write that binary search is O(log n).

 General rules for the analysis of programs

In general the running time of a statement or group of statements may be
parameterized by the input size and/or by one or more variables. The only

permissible parameter for the running time of the whole program is ‘n’ the input size.

1. The running time of each assignment read and write statement can usually be
taken to be O(1). (There are few exemptions, such as in PL/1, where
assignments can involve arbitrarily larger arrays and in any language that
allows function calls in arraignment statements).

2. The running time of a sequence of statements is determined by the sum rule.

I.e. the running time of the sequence is, to with in a constant factor, the
largest running time of any statement in the sequence.

3. The running time of an if–statement is the cost of conditionally executed

statements, plus the time for evaluating the condition. The time to evaluate
the condition is normally O(1) the time for an if–then–else construct is the

time to evaluate the condition plus the larger of the time needed for the
statements executed when the condition is true and the time for the
statements executed when the condition is false.

4. The time to execute a loop is the sum, over all times around the loop, the

time to execute the body and the time to evaluate the condition for

termination (usually the latter is O(1)). Often this time is, neglected constant
factors, the product of the number of times around the loop and the largest
possible time for one execution of the body, but we must consider each loop
separately to make sure.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

