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Among the basic operations which can be performed on fuzzy sets are the 
operations of union, intersection, complement, algebraic product and algebraic sum. 
In addition to these operations, new operations called "bounded-sum" and 
"bounded-difference" were defined by L. A. Zadeh to investigate the fuzzy 
reasoning which provides a way of dealing with the reasoning problems which are 
too complex for precise solution. This paper investigates the algebraic properties of 
fuzzy sets under these nex operations of bounded-sum and bounded-difference and 
the properties of fuzzy sets in the case where these new operations are combined 
with the well-known operations of union, intersection, algebraic product and 
algebraic sum. 

1. INTRODUCTION 

Among the well-known operations which can be performed on fuzzy sets 
are the operations of  union, intersection, complement, algebraic product  and 
algebraic sum. Much research concerning fuzzy sets and their applications to 
automata theory, logic, control, game, topology, pattern recognition, integral, 
linguistics, taxonomy, system, decision making, information retrieval and so 
on, has been earnestly undertaken by using these operations for fuzzy sets 
(see the bibliography in Gaines (1977) and Kandel (1978)). For  example, 
union, intersection and complement are found in most of  papers relating to 
fuzzy sets. Algebraic product and algebraic sum are also used in the study of  
fuzzy events (Zadeh, 1968), fuzzy automata (Santos, 1972), fuzzy logic 
(Goguen, 1968), fuzzy semantics (Zadeh, 1971) and so on. 

In addition to these operations, new operations called "bounded-sum" and 
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"bounded-difference" are introduced by Zadeh (1975) to investigate the 
fuzzy reasoning which provides a way of dealing with the reasoning 
problems which are too complex for precise solution. 

This paper investigates the algebraic properties of fuzzy sets under 
bounded-sum and bounded-difference as well as the properties of fuzzy sets 
in the case where these new operations are combined with the well-known 
operations of union, intersection, algebraic product and algebraic sum. 

2. F u z z y  SETS AND THEIR OPERATIONS 

We shall briefly review fuzzy sets and their operations of union, inter- 
section, complement, algebraic product, algebraic sum, bounded-sum, 
bounded-difference and bounded-product, which is a dual operation for 
bounded-sum. 

Fuzzy Sets: A fuzzy set A in a universe of discourse U is characterized 
by a membership function ~t A which takes the values in the unit interval 
[0, 1], i.e., 

u--, [0, l]. (1) 

The value of flA at u(EU), ¢G(u), represents the grade of  membership (grade, 
for short) of u in A and is a point in [0, 1 ]. 

The operations of fuzzy sets A and B are listed as follows. 

Union: 

A ~ B  ~, eta u ~ =/a a V #n. (2) 

Intersection: 

Complement: 

Algebraic Product: 

A lgebraic Sum: 

A ~ B  ez-~A ~ =/~A ACtB' (3) 

"~ ~=>/~X -= 1 --/G" (4) 

A . B "~¢G-B =/'tA/~B" 

A ~- B ~ la A +B = PA + ¢ts -- t-tA PB 

= 1 -- (1 --/G)(1 --/as)" 

(5) 

(6) 
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Bounded-Sum: 

MIZUMOTO AND TANAKA 

A ® B ,~/.tA~ = 1 A (/z A + gB)" (7) 

Bounded-Difference: 

A e B ~ U A e B  = 0 V (UA --UP. (8) 

Bounded-Product: 

A Q)BC~gAe n = 0  V (,u a + g n -  1), (9) 

where the operations of V, A, +, -- represent max, min, arithmetic sum, and 
arithmetic difference, respectively. 

3. ALGEBRAIC PROPERTIES OF FUZZY SETS 

UNDER VARIOUS KINDS OF OPERATIONS 

In this section we shall investigate the algebraic properties of fuzzy sets 
under the operations (2)-(9). We shall first review the well-known properties 
of fuzzy sets under union (2), intersection (3), and complement (4). 

I. The Case of Union (U) and Intersection (n)  

Let A, B and C be fuzzy sets in a universe of discourse U, then we have 
(see Zadeh (1965)): 

Idempotent laws: 

A U A  =A, 
(10) 

A N A  =A. 

Commutative laws: 

A U B = B U A ,  
(11) 

A A B = B A A .  

Associative laws: 

(AUB)UC=AU(BUC), 
(AmB)mC=Am(BmC). 

(12) 

Absorption laws: 

A U ( A N B ) = A ,  
(13) 

A ~ ( A U B ) = A .  
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Distributive laws: 

Involution law: 

De Morgan's laws: 

Identity laws: 

Complement laws: 

A U(BmC)=(A W B)n(A uC), 

.4 m(Bu  c )=  (.4 c B) w (A mc). 

A U B = A ~ B ,  

A ~ B = . 4 U B .  

A U O = A ,  A U U = ~  

A ~ O = O ,  A ~ U = A .  

A w d 4 : U ,  

where  O is an e m p t y  fuzzy  set def ined by go  = 0 .  

Note. Equa t ions  (18) can  be expressed m o r e  prec ise ly  as 

0 . 5 U c _ A u d c _  U, 

O c_ A cq ,~ c_ O.5 U, 

where  fl0.su = 0.5#v = 0.5 × 1 = 0.5. 

(14) 

(15) 

(16)  

(17) 

(18) 

(19) 

THEOREM 1 (Zadeh ,  1965). Fuzzy sets in U form a distributive lattice 1 
under U and ~ ,  but do not form a Boolean lattice, since .4 is not the 
complement of  A in the lattice sense (see (18, 19)). 

~A set L with two operations V and A satisfying idempotent laws, commutative laws, 
associative laws and absorption laws is said to be a lattice. If the lattice L satisfies distributive 
laws, then L is a distributive lattice. If the complement laws a V ti = 1 and a A d = 0 hold, L 
is a Boolean lattice. 
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THEOREM 2. Fuzzy sets also form a unitary commutative semiring with 
zero 2 under the operations U and n .  

Proof. This  can  be shown by let t ing + = U ,  X = ~ ,  1 = U and 0 = O in 

F o o t n o t e  2. 

W e  shall  next  rev iew the a lgebra ic  proper t ies  o f  fuzzy  sets under  the 

opera t ions  o f  a lgebra ic  p roduc t  (5) and a lgebra ic  p roduc t  (6) (cf. K a u f m a n n  

(1973)) .  

II. The Case of Algebraic Sum (4-) and Algebraic Product ( • ) 

Idempotency : 

A 4-AD_A, 

A . A c A .  
(20) 

Commutativity : 

A 4- B =  B 4- A, 
(21) 

A . B = B  .A.  

A ssociativity: 

( A 4- B ) 4- C = A 4-(B4-C),  

(.4. B ) .  C = A  . (B . C). 
(22) 

Absorption: 

A 4- (A . B )@A ,  

A . (A 4- B)=_A. 
(23) 

Distributivity : 

A 4- (B.  C)~_ (A 4-B) .  (A 4- C), 

A . (B 4- C) ~ (A . B ) 4- (A . C). 

De Morgan's laws: 

A 4 - B = A . B ,  

A 

(24) 

(25) 

2A semiring (R, ÷, X) is a set R with two operations + and × of addition and 
multiplication such that + is associative and commutative, and × is associative and 
distributive over +, i.e., a X (b + e) = (a X b) + (a × e). A semiring is unitary if × has a unity 
1, and is commutative if × is commutative, and is a semiring with zero if + has an identity 0 
such that 0 × a = a X 0 = 0 .  



FUZZY SETS AND OPERATIONS 35 

Identities: 

Complementarity: 

A + O = A ,  A + U = ~  

A . 0 = 0 ,  A .  U = A .  

A +A:/=U, 

A .d~o. 

(26) 

(27) 

Remark. Equat ions (27) can be rewritten more precisely as 

0.75Uc_A q-~_ U, 

O c _ A  • , 4 _  0.25U, 
(28) 

Thus we can easily obtain the next theorem. 

THEOREM 3. Fuzzy sets in U under algebraic sum (-i-) and algebraic 
product (.) do not constitute such algebraic structures as a lattice and a 
semiring. Fuzzy sets, however, form a commutative monoid under q- (or .).3 

We shall next discuss the absorpt ion proper ty  and the distr ibutivi ty in the 
case where the operat ions of  algebraic sum, algebraic product ,  union, and 
intersection are combined each other. 

III. The Case of  Algebraic Sum (~-) and Algebraic Product (.) Combined 
with Union(U) and Intersection ( n )  

Absorption: 

A • (A U B) _ A, (29) 

A .  ( A n  B) _~ A, (30) 

A -i-(AuB)~_A, (31) 

A q- ( A n  B) _ A, (32) 

A W (A. B ) = A ,  (33) 

A n (A • B) c A, (34) 

A U (A + B) _ A, (35) 

A A (A -i- B ) = A .  (36) 

3 A semigroup (S, *) is a set S together with an operation * such that * is associative. A 
monoid (or unitary semigroup) is a semigroup with identity under *. The monoid is called 
commutative if * is commutative. 
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Distributivity : 

A. (BU C)= (A. B) U (A. C), (37) 

a . ( B n C ) =  O "  B ) m ( a  • C), (38) 

A q- (BO C)= (A -i- B) U (A 4- C), (39) 

A -i- (B m C) = (A -i- B) m (A + C), (40) 

a U (B. C)_~ (A UB) .  (A U C), (41) 

A n (B. C)_~ (A AB) -I- (A N C), (42) 

A U (B $ C) __G (A UB) -i- (A W C), (43) 

A n (B -]- C)~_ (A A B ) g  (An C). (44) 

THEOREM 4. Fuzzy sets form a unitary (=U) commutative semiring with 
zero (=0) under U (as addition) and algebraic product • (as multilieation). 
The duality holds for intersection n (as addition) and algebraic sum ~- (as 
multiplication). Fuzzy sets also form a lattice ordered semigroup 4 with zero 
;~ and unity U under U, n and .. The duality holds for n ,  u and At. 

We shall next discuss the algebraic properties of fuzzy sets under the 
operations of bounded-sum • (7), bounded-difference G (8) which were 
defined by Zadeh (1975), and bounded-product Q) (9) which is a new 
operation dual to bounded-sum. The new operation of bound-product Q) can 
be expressed by using De Morgan's laws to be shown in 

a @ B = d ® ~ = A  ®B. (45) 

IV. 
and Bounded-Product Q) 

Idempoteney : 

The Case of Bounded-Sum ®, Bounded-Difference @ 

A ~ A  ___A, (46) 

A Q)A _A,  (47) 

A OA = 0 .  (48) 

4 A lattice L which is a semigroup under * and also satisfies the following distributive law 
is called a lattice ordered semigroup and denoted as L = (L, V, A, .) ,  where V and A are 
operations of lub and glb in L, respectively. The distributive law is x * (y V z) = (x * y) V 
(x * z). Moreover, L = (L, V, A, . )  is said to be a lattice ordered semigroup with unity I and 
zero 0 if the following are satisfied for any a in L, i.e., 

a V 0 = a ;  a * 0 = 0 * a = 0 ,  
a V I = I ;  a * I = l * a = a .  
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Commutativity: 

A ssoeiativity: 

A @ B = B O A ,  

A @ B = B @ A ,  

A Q B 4 : B O A .  

(A ®B)® C=A ® (B ® C), 

(.4 @B)@ C=A @ (B @ c), 

(,4 ® B ) ®  C_cA ® (B® c). 

As a special case of (54), we have 

A ® (.4 ® B ) = A  riB. 

Absorption: 

(i) Case of ® and @: 

A ® ( A @ B ) ~ A ,  

A@(A®B)c_A.  

(ii) Case of® and @: 

A@(A @B)@A, 

A (~ (B O A)=AUB,  

A Q (.4 @B)=O,  

(AQB) Q A = A N B .  

(iii) Case of Q) and @: 

A @ (A G B)c_A, 

A @ ( B Q A ) = O ,  

A Q (A Q) B)=A NJB, 

(A (~ B) e A =O. 

Distributivity : 

O) Case of ® and @: 

A ® (~ (}b C) e: (A ® B) @ (A ® C), 

A Q (~® C)#= (,4 @B)® (.4 @ C). 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 
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(ii) 

(iii) 

M I Z U M O T O  A N D  T A N A K A  

Case of ® and 0: 

A ®(B ® C)~_(A ®B) ® (A ®C), 

A @(B@C)c_(AOB)G(A OC), 

(B® C) ®A #= (B ®A)® (C ®A). 

Case of Q) and 0 : 

A @(B e C)c_(A @B)@ (A QC), 

A e (B@ C)D_(A @B)@ (A @ C), 

(B Q) C) @A___(B QA)@ (C QA). 

De Morgan's Laws: 

Furthermore, 

Identities: 

Finally, 

Moreover, 

A @ B = A @ B ,  

A @ B = A O B ,  

A @ B = A @ B .  

AOB=.,4QB, 

A Q . B = B G A .  

AQ)B=A@B, 

A®~=AQB. 

A@O=A,  

A®U=U,  

A @ o = o ,  

A@U=A. 

A G O = A ,  

O ® A = O ,  

A ® U = O ,  

U®A = Z  

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 
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Complementarity: 

A ® ,4 = U, (89) 

A O A = o ,  (90) 

O___A O ,4_c U, (91) 

O - -4 Q A a_ U. (92) 

Remark 1. From (52) and (53) it is found that the operations Q 
and Q) are associative. Thus can represent A 1 Q A 2 Q . . . Q A  n and 
A~@A2@... @A. as 

#A,®A2®'' "®a, = 1 A ~AI +/IA2 + "'" +/~a,) ,  

UA,QA2e.. "CA, = 0 V [Ua~ +~tA2 + "'" +l~A, -  (n -- 1)]. 

If A 1 = A 2 . . . . .  A,(=A), then we can have 

/~A®A®-..®A = 1 A n/~A, 

/~A 9A @... @A = 0 V (1 -- n/,t~). 

Remark 2. The operations U, n ,  over fuzzy sets can be represented by 
using Q, @, (and @), that is, by using (59), (55), (61) and (88). Namely, 

A W B = A ® ( B ® A ) ,  

A n B = A  ® (A ® B)= (~i®B) ® d, 

~ = U ® A .  

(93) 

(94) 

(95) 

It should be noted that ®, @, Q are shown not to be represented by U, N, 
and 

Remark 3. Fuzzy sets under @ and @ satisfy the complement laws 
(89)-(90), though they do not satisfy these laws under U and N, and • and 
+. Note that we have 0.5Uc_A U,4  _ U; O _~A N.4  ~ 0.5U under U and n 
from (19), and 0.75U_cA ~-.4~_ U; O__A ..4_c 0.25U under + and • from 
(28). 

From the above property concerning ®, Q) and @, we can immediately 
obtain the following theorem. 

THEOREM 5. Fuzzy sets under • and Q) do not satisfy the absorption 
and distributive laws and hence do not form such algebraic structures as a 
lattice and a semiring. The same is true of  Q and Q, and of  Q) and Q. 
Fuzzy sets, however, form a commutative monoid under • (or (~ ), but do 
not form such a structure under 8 



40 MIZUMOTO AND TANAKA 

We shall next deal with the absorption and distributive properties for 
fuzzy sets under the operations of bounded-sum, bounded-difference and 
bounded-product combined with the operations of union and intersection. 

V. The Case of Bounded-Sum ®, Bounded-Difference @ and Bounded Q) 
Combined with Union U and Intersection A 

Absorption: 

A U (A ® B) @ A, (96) 

A n (A ® B) = A, (97) 

A U (A Q) B) = A, (98) 

A ~ (A Q) B) _ A, (99) 

i U (.4 @ B) =A,  (100) 

A U (B@ A)-# A, (101) 

A ~ (A @ B) c A ,  (102) 

A ~ (B @ A) 4: A. (103) 

Distributivity : 

Moreover, 
A @ ( A u B )  D_A, (104) 

A @ (A nB)~_A,  (105) 

A Q) (,4 uB)c_A,  (106) 

A (~) (ANB)  c_A, (107) 

A @ (A U B ) = O ,  (108) 

(A U B) Q A = B @A 4: A, (109) 

A @ ( A ~ B ) = A O B c - A ,  ( l l0)  

(A ~ B )  @ A =O, (111) 

A U (B @ C) ~ (A UB) @ (A U C), (112) 

A ~ (B @ C) c (.4 ~B)  @ (A ~ C), (113) 

A U(B @ C)~ (A U B)@ (A UC), (114) 

A m (B @ C)_ (A riB) @ (A n C), (115) 

A u ( B  @ C)~(AUB) @ (A U C), (116) 

A n(B  Q C)~_ (A AB) @ (A ~C), (117) 
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and 
A @ (BU C)= (.4 @B)U (.4 @ C), (118) 

A @ (BmC)=(A @B)N(A ®C), (119) 

,4 Q) (B U C) = (,4 Q)B)U (A Q) C), (120) 

A Q) ( B N C ) = ( A  QB)Fh(A  @C), (121) 

A @ ( B U C ) = ( A  @ B)N (A Q C), (122) 

A @ ( B N C ) = ( A  @ B)U (A @ C), (123) 

(BUC) @ A = (B @ A ) U  (C @ A), (124) 

(BnC)  Q A = (B G A ) n  (c e A), (125) 

THEOREM 6. Fuzzy sets satisfy associative laws, commutative laws and 
distributive law (120) under the operations of bounded-product Q) and union 
u, and thus they form a unitary (=U) commutative semiring with zero (=0) 
under Q) (as multiplication) and U (as addition). Dually, fuzzy sets under 
the operations of bounded-sum @ (as multiplication) and intersection n (as 
addition) form a unitary (=O) commutative semiring with zero (=U). 
Moreover, fuzzy sets under @ (as multiplication) and U (as addition)form a 
unitary (=0) commutative semiring. The same holds for Q) (as 
multiplication) and n (as addition), where U becomes a unit element for n.  
Furthermore, fuzzy sets also form a lattice ordered semigroup with unity U 
and zero 0 under U, n and Q), where Q) is a semigroup operation. Dually, 
they form a lattice ordered semigroup with unity 0 and zero U under n,  u 
and @. 

As a generalization of V, the following formulas can be obtained. 

VI. Formulas Obtained as a Generalization of V 

( A U B ) @ ( C U D ) = ( A @ C ) U ( A @ D ) U ( B @ C ) U ( B @ D ) ,  (126) 

( A C ~ B ) @ ( C ( h D ) = ( A @ C ) N ( A @ D ) N ( B @ C ) N ( B @ D ) ,  (127) 

(A UB)@ (A riB) =A ®B, (128) 

(A u B) Q) (c u D) = (A Q) C) u (A Q) D) u (B Q) c) u (B Q) D), (129) 

(A N B )  Q) (C(hD) = (A Q) C)Ch (A Q) D)N (B (~) c ) n  (B Q) D), (130) 

(A uB) @ (A r iB)=a @B, (131) 

( A U B ) @ ( C N D ) = ( A Q C ) U ( A O D ) U ( B @ C ) U ( B Q D ) ,  (132) 

( A N B )  Q ( C U D ) = ( A O C ) A ( A O D ) C h ( B @ C ) N ( B O D ) ,  (133) 

(A UB) ® (A n B ) =  (.4 ® B)U (B @ A) = IA --BI. (134) 
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We shall next discuss the absorption and distributive properties under the 
operations of bounded-sum, bounded-difference and bounded-product 
combined with the operations of algebraic product and algebraic sum. 

VII. The Case of Bounded-Sum ®, Bounded-Difference ® and Bounded- 
Product ® Combined with Algebraic Product • and Algebraic Sum ~- 

Absorption: 

and 

Distributivity: 

A • (A ®B)_=A, (135) 

A ~- (A ® B ) ~ _ A ,  (136) 

A . (A @ B)c  A, (137) 

A +(A @ B ) _ A ,  (138) 

A • (A ® B) ~ A ,  (139) 

A • (B ® A) c_A, (140) 

A Sc(A ®B)~_A, (141) 

A 5r(B ®A)D_A, (142) 

A ® (.4 • B) _~A, (143) 

A O (A ~- B)@A, (144) 

A @ (A .B)~_A, (145) 

A @ (A ~-B)~_A, (146) 

A ® (A • B) =A ./~___A, (147) 

(A • B) ® A = 0, (148) 

A ® (A -i-B)= 0, (149) 

(A -i-B) O A  = .4 .  B. (150) 

A • (B ® C)_= 

A -i- (B ® C)=_ 

A . (B O C)~_ 

A +(BOC)=_ 

A . ( B O C ) =  

A -i- (B @ C)_~ 

(A • B ) ®  (A • C), (151) 

(A q- B) ® (A -i- C), (152) 

(A • S) Q (A. C), (153) 

(A ~- B) @(A ~- C), (154) 

(A • B) ® (A • C), (155) 

(A -i- B) @ (A + C). (156) 
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Furthermore, 

A ® (B- C) 4 = (A ® B). (A @ C), (157) 

A @(B ~-C)~ (A ®B)~-(A ¢C), (158) 

A @ (B. C) :g (A @ B). (A Q) c), (159) 

A Q) (B q- C) ve (A @ B) ~- (A Q) C), (160) 

A @ (B. C)_~ (.4 O B). (,4 @ C), (161) 

(B. C) @Ave (B GA) .  (C @ A), (162) 

A @ (B-] -C)c (A  @B)  q-(A @ C), (163) 

(B -]- C) Q A =/= (B Q A) ~- (C @ A). (164) 

THEOREM 7. Fuzzy sets under bounded-sum ® and algebraic product • 
do not form such algebraic structures as a lattice and a semiring, since they 
do not satisfy the distributive laws and the absorption laws. The same is true 
of (®, q-), (@, .), (@, -]-), (@, .) and (@, ~-). 

Remark. Although fuzzy sets do satify the distributive law (155) under 
@ and.,  they do not satisfy the associative law and the commutative law 
under G (see (54), (51)) and thus they do not constitute a lattice and a 
semiring under these operations. 

Finally, we shall list the properties of fuzzy sets under containment 
relation c. 

VIII. Properties of Fuzzy Sets under Containment Relation c_ 

A @ B c _ A  . B c _ A N B ,  (165) 

A @B~_A ~-B~_A UB,  (166) 

A @ B ~A n/~, (167) 

A ~_B, CcD: :>A U C~_ B UD,  (168) 

~ A  N C c  B N D ,  (169) 

~ A  • C~_B • D, (170) 

~ A q - C G _ B ~ - D ,  (171) 

~ A  @ C ~ B  @D, (172) 

=> A @ Cc_B @ D, (173) 

A ~ B , D  ~ C=>A @ C~_B @ D, (174) 

A ~ B ~ A  @B=O,  (175) 
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~ A ® B  =U,  

¢¢ .AUB = B, 

¢ > A n B  = A. 

(176) 

(177) 

(178) 

4. RELATIONSHIP BETWEEN FUZZY SET AND MANY-VALUED LOGIC 

The theory of fuzzy sets may be embedded in a many-valued logic by 
interpreting the grade of membership PA(U) as representing the truth value of 
the statement "u is in the fuzzy set A." This section shows that the 
operations of bounded-sum ® and bounded-product @ for fuzzy sets are 
corresponding to the operations of "sum" and "product," respectively, in 
Lukasiewicz's many-valued logic (Izeki, 1963), and then discusses the 
representation of implication (~) and equivalence (~)  by means of ~), @ 
and @. 

In many-valued (or continuous) logic (Rescher, 1969; Ginzburg, 1967) 
and fuzzy logic (Marinos, 1969; Lee and Chang, 1971; Kandel, 1974), the 
truth value V(P) of a statement P takes the value in the unit interval [0, 1], 
in which V(P) = 1 indicates the statement P is completely true and V(P) = 0 
indicates P is completely false. 

The operations proposed in many-valued logic and fuzzy logic are listed 
below: 

Logical Sum: 

Logical Product: 

Negation: 

Sum: 

Product: 

Implication: 

x V y =max{x,y}. (179) 

x Ay = min{x, y}. (180) 

.g= 1 - x .  (181) 

x O y =  1 A (x + y). (182) 

xQ)  y = O  V (x + y - 1 ) .  (183) 

x ~ y =  I A (1 - - x + y ) .  (184) 
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Equivalence: 

x ~ y =  (1 - - x  + y )  A (1 - - y + x ) .  (185) 

From these definitions it is easily found that the operations of  fuzzy sets 
are closely connected with these operations of  many-valued logic and fuzzy 
logic. Figure 1 gives the pictorial representation of  these logical operations 
and the other logical operations indicated below such as difference O ,  
algebraic p r o d u c t . ,  algebraic sum + and other kinds of  implications. The 
logical operations Q ,  • and + can be introduced from the operations for 
fuzzy sets, and two implications can be found in Zadeh (1973) and Goguen 
(1968), respectively. That is to say, 

Difference: 

x O y = O A ( x - y ) .  (186) 

Algebraic Product: 

xy = x . y. (187) 

x v y  ~~y..-i ............ 

. . . . . .  I . . . .  ~ ~ :"r'~-- 

(a) 

xay 
l 

...-E-" . . . . . . . . . .  " "  

× ~  . . . . . .  ~ I  ~ 

(b) 

Y 

0 1 

(c) 

. xey 

I I 
! [ I I 

i , I 
I I I 

', i iy 
x .~_-_'/ . . . . . . . . .  2 I "  

(d) 

FIG. 1. Illustration of logical operations. (a) Logical sum x V y = max{x, y}. (b) Logical 
product x Ay = max{x, y}. (c) Negation E = 1 -- x. (d) Sum x O Y = 1 A(x + y). 
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Algebraic Sum: 

Implications: 

MIZUMOTO AND T A N A K A  

x 4- y =  x + y -  xy.  ( 1 8 8 )  

x-~ y = 2 V  y, (189) 

x - - , y = l  . . . x<~y ,  
(190) 

Y 
. . . . .  x > y .  

x 

The implication --* of (184) can be defined using the logical operations of 
sum O (182), product @ (183) and difference @ (186): 

x ~ y = . g @  y (191) 

= x @ 37 (192) 

= x @ y. (193) 

,~x®y 
.1 n . . . . . . . .  - ~  

I . . . .  ,~ - 2 ( , ,  
I I 

, l y  

i 
X 

(e) 

x-~y  

I . . . .  I 
I 

i ' l 

. . . . . .  i . . . .  

II I I I 

' , / / . - ' -o  : . . - ' ,  - 

(f) 

x ~r:~y 

I I 
I i 
I ! 
I I 

1 

X .~'-~Z.. . . . .  2 - "  

(g) 

4, x e y  
11_ ....... --m 

~----" ..... ~" I 
' ' 

I I I I 
l I I I 

I ! I 

a I 

t , y 

(h) 

FIG. 1 - -Con t inued .  (e) Product  x @ y = 0 V (x + y -- 1). (f) Impl icat ion x --* y = 
1 A (1 - - x  + y ) .  (g) Equivalence x ~ y =  (1 - - x + y )  A (1 - y  + x ) .  (h) Difference x @ y =  
o v (x - y). 
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Conversely, O, (~) and @ are also defined by this implication. 

x ® y = £ - ~  y, 

x@y=x--*y, 

x Q y = x ~ y .  

Finally, the equivalence of (185) will be defined as 
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(194) 

(195) 

(196) 

x ' . -~  y =  ( x - ~  y )  A ( y - ~  x )  

= (x ® y)/x (y ® x) 

= (x 0 Y) V ( y  @ X) 

= I x - y l  

= l - i x - y  [, 

where ]z] stands for the absolute value of a real number z. 

(197) 

xy 

,~ . . . . .  i . . . . .  X ' ,  I 
I ! 
I I I 
, ~y=o.s ', 

I ~ ' ; ~ . Y  ~ * y 
' /.~"'-. I _ . ' - 1  ~ 

h )  

• x-i-y 
s s  . . . . . . . . . . .  

~ " - - "  t / J /x~y=075 i 
, \ ~ . $ - ~ ' 7 ' i ~ .  __ , 
I %'-" , / / I x-'y=0.5 
I I i 'i W/ / '  'iy 
.' ~ . . . . . .  ; . . . . .  :.4---~ 

i <  . . . . . . . . . . .  - . i .  

Ij) 

I I 

l I I ] 
I 
: ', y 
, . ,  . . . . . .  ~ " - -  - ; - . ~ - >  

/ 

(k) 

x---->y 
1 '  

F'- . . . . . . . . .  

E 
I 

I I , / ,,y 

( i ) ~ "  1 

FIG 1 - -Con t inued .  (i) Algebra ic  product  x y  = x • y. (j) Algebraic  sum x ~- y = x + y - xy .  

(k) Impl icat ion x ~ y = .g V y. (1) Impl icat ion x ~ y = 1 . . .  x <~ y; y / x  . . .  x > y.  

6 4 3 / 4 8 / 1 - 4  
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5. CONCLUSION 

We have discussed the algebraic  propert ies of  fuzzy sets under the new 
operat ions of  bounded-sum, bounded-difference and bounded-product  and the 
propert ies of  fuzzy sets under these operat ions combined with the well- 
known operat ions of  union, intersection, a lgebraic  product  and algebraic  
sum. 

As was indicated in Section 4, the operat ions over fuzzy sets can be 
obtained by applying the logical operat ions of  many-valued  logic to fuzzy 
sets. Thus, if we introduce the other kinds of  logical  operat ions of  many-  
valued logic to fuzzy sets, we can define various kinds of  useful operat ions 
for fuzzy sets and, as a result, further fruitful appl icat ions  of  fuzzy sets will 

be found in a variety of  areas. 
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