
Introduction to SQL

What is SQL?

SQL stands for Structured Query Language

SQL lets you access and manipulate databases

SQL became a standard of the American National Standards 

Institute (ANSI) in 1986, and of the International Organization 

for Standardization (ISO) in 1987



What Can SQL do?

SQL can execute queries against a database

SQL can retrieve data from a database

SQL can insert records in a database

SQL can update records in a database

SQL can delete records from a database

SQL can create new databases

SQL can create new tables in a database

SQL can create stored procedures in a database

SQL can create views in a database

SQL can set permissions on tables, procedures, and views



Basic SQL Query and Examples of SQL 

Quries:
 Data Types

DDL Commands

 CREATE Table

 Alter Table

 Truncate Table

 Drop Table

DML Commands

 Select 

 Distinct

 Where clause

 Update

 Column aliasing



Create Table Command :

The create table command defines each 

column of the table uniquely. Each column has a 

minimum of three attributes, a name, data type 

and size of column.

 Each table column definition is separated by a 

comma and SQL statement is terminated with a 

semicolon.



Rules for creating table :

 A name can have maximum up to 30 character.

 Alphabets from A-Z, a-z and numbers from 0-9 are 
allowed.

 A name should begin with an alphabet.

 The use of the special character like ‘_’ is allowed and 
also recommended. (special character like $, # are 
allowed)

 SQL reserved words are not allowed like create, select….

Syntax :

CREATE TABLE <table name>

<column name1> <Data type> (<size>),

<column name2> <Data type> (<size>);





Inserting data into table :
 After creating a table, we have to insert values within that table.

 The SQL command INSERT is used for inserting data into the table. 
While inserting rows you may insert the values for each attribute of 
the table.

 We can use insert command as following ways-

Syntax :

1) INSERT INTO <Table Name> Values(expression1, 
expression2,………….);

OR

2) INSERT INTO <Table name> (Column1, Column2, Column3,…….) 
Values (expr1, expr2, expr3, ….);

OR

3) INSERT INTO <Table name> values (‘& column1’, ‘&column2’, 
‘&column3’, ……);





Viewing or selecting date :

Once data has been inserted into a table we 

can view from that table according to users 

requirement. The SELECT command is used to 

retrieve rows from the table.

 The SELECT command is used for different 

purpose as follows:



All Rows & All Columns:

To view all records with all columns the SELECT command is 

used as follows,

Syntax – SELECT * from <table name>

e.g. SELECT * from Student;

Above statement display all records from table Student.





Filtering Table Data :

While viewing data from a table it is rare that all 
the data from the table will be required each 
time. Hence, SQL provides a method of filtering 
table data that is not required.

The ways of filtering table data are :

- Selected columns and all rows.

- Selected rows and all columns.

- Selected columns and selected rows.



Selected columns and all rows :

If you want to display the specific columns but all rows from the 

particular table the select command can be used as follows-

Syntax – SLECT <column name>, <column name2> FROM<table 

name>;

e.g. Consider table Student having column Roll No., Name and 

Address and you want to retrieve the content of column Roll No. from 

student table, then the statement can be written as-

SQL>SELECT Roll No. from Student.

The above command display all the rows but selected column i.e. 

Roll No. from student table.







Selected Rows and all column:

 If you want to select specific rows and all columns from 

particular table then we have to write specific condition. To 

write specific condition Oracle provides the option of using a 

WHERE caluse.

Syntax – SELECT *FROM<Table Name> WHERE<condition>;

 Here <condition> is always quantified as <column name = 

value> or with the condition we can use all logical & 

arithmetic operators.

 e.g. Suppose you want to display the student information 

whose Roll No = 3 from student table, then SELECT command 

can be used as-

 SELECT * FROM Student WHERE Roll No=3;





Selected Column & Selected Rows :

 If we want to view specific data set from the table & 

also a selected number of columns then we can use 

SELECT command as-

SELECT<column name1>, <column name2> FROM <Table 

Name> WHERE <conditions>;

e.g. Consider you want to access or retrieve the 

students Roll No, Name whose Roll No is greater than 5, 

then the SELECT command can be written as-

SQL>SELECT Roll No, Name from Student WHERE Roll 

No>2;





Eliminating Duplicate Rows when using a SELECT command 
:

 A table could hold duplicate rows. In such case to view only 
unique rows the DISTINCT clause can be used.

 The DISTINCT clause allows removing duplicates from the result 
set. The DINSTINCT can only be used with select statement.

 The DISTINCT clause scans through the values of columns 
specified & displays only unique values from amongst them.

Syntax: SELECT DISTINCT <column name1>, <column name2> FROM 
<Table Name>;

 The SELECT DISTINCT *SQL Syntax scans through entire rows, & 
eliminates rows that have exactly the same contents in each 
column.

Syntax : SELECT DISTINCT * FROM <Table Name>;

 e.g.1 – SELECT DISTINCT Roll No FROM Student;





Updating the contents of a table :

 The update command is used to change or modify data 

values in a table.

 The verb update in SQL is used to either update:

All the rows from a table.

OR

A select set of rows from a table.



Updating All Rows :

 The UPDATE statement updates columns in the existing 

tables with new values. The SET clause indicated which 

column data should be modified & the new values that 

they should hold.

 The WHERE clause, if given, specifies which rows should 

be updated. Otherwise, all table rows are updated.

Syntax : UPDATE<Table Name> SET<Column 

Name1>=<expression>, <Column Name 2> = 

<expression2>;

 e.g. consider student table having Roll No, Name & 

Class, change the class to BCSTY;

SQL>UPDATE Student SET Class = BCSII;





BEFORE UPDATE

AFTER UPDATE



Update Record Conditionally

Syntax : UPDATE <Table Name> SET<column 

name1> = <expr1> <column name2> = <expr2> 

WHERE <condition>;

e.g. update the student name John to Josef.

SQL>UPDATE Student SET Name=’MOHINI’ WHERE 

Name=’MANISHA’





Column Aliasing

You can rename a column temporarily by giving 

another name known as Alias. The use of alias rename 

the table column temporary and the actual name does 

not change in the database.

Syntex.

Select column_name AS alias_name

From table_name

Where [condition];







Altering Table Structure

The structure of table can be modified 

using ALTER TABLE command. ALTER table 

allows changing the structure of a existing 

table. We can add or delete columns, 

change the data types of column, 

rename table.



Adding NEW Column-

Syntax:- Alter table <Table Name> ADD 

(<New Column> <Data Type><Size>);



Dropping Column from a table:
Syntax:- Alter table <table name> drop column <column name>;



Modifying Existing Column:
Syntax: Alter Table <table Name> Modify (<column name> 

<New data type> <new size>);



Renaming Tables:
Following is the syntex to rename the table.

Syntax: Rename <Table name> to <New table 

Name>



Truncating tables:
Truncate table empties a table completely it is equivalent to 

delete all rows.

Syntax:- Truncate table <Table Name>;

It is different from delete because it much faster than delete and 

not transaction safe means the number of raws deleted not 

returned.



DESTROYING Table :

Syntax:- Drop Table <Table Name>;



Checking privileges



Granting permission to system user



Creating View



Creating View



Inserting the data into view



UPDATING the data of view



Deleting Row from view



Aggregate Operators Group by & 

order by clause
 Aggregate function often need an added GROUP BY ststement.

 GROPU BY Statement

 The group by statement is used in conjunction with the aggregate 

function to group the result set by one or more columns.

 Syntex:

SELECT column_name, 

aggregate_function (column_name)

FROM table_name

Where column_name operator value

GROUP BY column_name











Order BY




