
Chapter 2.

Linked List
(08 periods)

Dayanand Science College Department Of Computer Science 1

Content:

1. Introduction to Linked list,

2. Representation of linked list in memory,

3. Traversing,

4. Searching in Unsorted linked list,

5. Overflow and Underflow,

6. Inserting at the beginning of a list,

7. deleting node following a given Node.

Dayanand Science College Department Of Computer Science 2

Introduction to Linked list

• Like arrays, Linked List is a linear data structure.

• Unlike arrays, linked list elements are not stored at a contiguous location;

• the elements are linked using pointers.

101 110 114 117

110 114 117

Dayanand Science College Department Of Computer Science 3

Why Linked List?

Arrays can be used to store linear data of similar types, but
arrays have the following limitations.

1) The size of the arrays is fixed: So we must know the upper limit on the number of
elements in advance. Also, generally, the allocated memory is equal to the upper limit
irrespective of the usage.

2) Inserting a new element in an array of elements is expensive because the room has to
be created for the new elements and to create room existing elements have to be shifted.

Dayanand Science College Department Of Computer Science 4

For example

• in a system, if we maintain a sorted list of IDs in an array id[].

id[] = [1000, 1010, 1050, 2000, 2040].

• And if we want to insert a new ID 1005, then to maintain the sorted order,

we have to move all the elements after 1000 (excluding 1000).

Deletion is also expensive with arrays until unless some special techniques

are used. For example, to delete 1010 in id[], everything after 1010 has to be

moved.

Dayanand Science College Department Of Computer Science 5

Representation:

• A linked list is represented by a pointer to the first node of the linked list.

The first node is called the head. If the linked list is empty, then the value of

the head is NULL.

Each node in a list consists of at least two parts:

1) data

2) Pointer (Or Reference) to the next node

In C, we can represent a node using structures. Below is an example of a

linked list node with integer data.

Dayanand Science College Department Of Computer Science 6

Representation:

• Let LIST be a linked list. Then LIST will be maintained in memory specified

as follows. First of all, LIST requires two linear arrays we will call them here

INFO and LINK- such that INFO[K] and LINK[K] contain, respectively,

the information part and the nextpointer field of a node LIST. As noted above

LIST also requires a variable name- such as START. START contains the

location of the beginning of the list, and a nextpointer sentinel -denoted by

NULL- which indicate the end of the list. Since the subscripts of the array

INFO and LINK are usually positive, we will choose NULL=0.

Dayanand Science College Department Of Computer Science 7

• The following example of linked list indicate that the nodes of a list need

not occupy adjacent elements in the array INFO and LINK, and that more

than one list may be maintained in the same linear array INFO and LINK.

However, each list must have its own pointer variable giving the location of

its first node.

Dayanand Science College Department Of Computer Science 8

Dayanand Science College Department Of Computer Science 9

Representation

• Above picture is of linked list in memory where each node of the list contains a single character. We can obtain the actual list of characters as
follows.

• Algorithm

• START= 9, so INFO[9]=N is the first character.

• LINK[9]=3, so INFO[3]=O is the second character.

• LINK[3]=6, so INFO[6]= (Blank) is the third character.

• LINK[6]=11, so INFO[11]=E is the fourth character.

• LINK[11]=7, so INFO[7]=X is the fifth character.

• LINK[7]=10, so INFO[10]=I is the sixth character.

• LINK[10]=4, so INFO[4]=T is the seventh character.

• LINK[4]=0, the NULL value, so the List has ended.

• In other words, NO EXIT is the character string.

Dayanand Science College Department Of Computer Science 10

Types of Linked List

• Following are the various types of linked list.

• Simple Linked List − Item navigation is forward only.

• Doubly Linked List − Items can be navigated forward and backward.

• Circular Linked List − Last item contains link of the first element as next

and the first element has a link to the last element as previous.

Dayanand Science College Department Of Computer Science 11

Simple Linked List

101 110 114 117

110 114 117

Dayanand Science College Department Of Computer Science 12

Doubly Linked List

A 15 11 B 17 15 C 19 17 D

11 15 17 19

START

Dayanand Science College Department Of Computer Science 13

Circular Linked List (Simple)

101 110 114 117

110 114 117 101

Dayanand Science College Department Of Computer Science 14

Circular Linked List (Double)

A 15 11 B 17 15 C 19 17 D 11

11 15 17 19

START

Dayanand Science College Department Of Computer Science 15

2.3 Traversing
A linked list is a linear data structure that needs to be traversed starting from the head node until the

end of the list. Unlike arrays, where random access is possible, linked list requires access to its nodes

through sequential traversal. Traversing a linked list is important in many applications. For example,

we may want to print a list or search for a specific node in the list. Or we may want to perform an

advanced operation on the list as we traverse the list. The algorithm for traversing a list is fairly

trivial.

a. Start with the head of the list. Access the content of the head node if it is not null.

b. Then go to the next node(if exists) and access the node information

c. Continue until no more nodes (that is, you have reached the last node)

Let LIST be a linked list in memory stored in linear array INFO and LINK with START pointing to

the first element and NULL indicating the end of LIST. Suppose we want to traverse LIST in order

to Process each node exactly once. This section presents an algorithm that does so and then uses the

algorithm in some applications.

Dayanand Science College Department Of Computer Science 16

101

101 112 120 125

A B C D
112 120 125

Dayanand Science College Department Of Computer Science 17

Algorithm: 1. Set PTR:=START.[Initializes pointer PTR]

2. Repeat Step 3 and 4 while PTR≠ NULL.

3. Apply PROCESS to INFO[PTR].

4. Set PTR:= LINK[PTR]. [PTR now points to the next node.]

[End of Step 2 loop.]

5. Exit.

Dayanand Science College Department Of Computer Science 18

Algorithm details

Initialize PTR or START.

Then process INFO[PTR], the information at the first node.

Update PTR by the assignment PTR:=LINK[PTR], so that
PTR points to the second node.

Then Process INFO[PTR], the information at the second node.

Again update PTR by the assignment operator
PTR:=LINK[PTR], and then process INFO[PTR], the
information at the third node.

And so on. Continue until PTR=NULL, which signals the end
of the list.

Dayanand Science College Department Of Computer Science 19

Traversing Linear Array
• LA- Array, Lower Bound= LB, Upper Bound=UB, S-> Process

each element

• Algorithm: 1) Initialize Counter I=LB

2) Loop (While I<=UB)

3) Apply S to LA[I]

4) I=I+1

5) End Loop

6) Exit

1

2

3

4

LB

UB5

1

2

3

4

5

I=LB LA[i] *2 I=I+1

1 1*2=2 I=1+1=2

2 2*2=4 I=2+1=3

3 3*2=6 I=3+1=4

4 4*2=8 I=4+1=5

5 5*2=10 I=5+1=6
Dayanand Science College Department Of Computer Science 20

#include <stdio.h>

#include<conio.h>

void main()

{ int LA[] = {2,4,6,8,9};

int i, n = 5;

printf("The array elements are:\n");

for(i = 0; i < n; i++)

{

printf("LA[%d] = %d \n", i, LA[i]);

}

getch();

}

Command Prompt

The array elements

are:

LA[0] = 2

LA[1] = 4

LA[2] = 6

LA[3] = 8

LA[4] = 9
Dayanand Science College Department Of Computer Science 21

2.4 Searching Unsorted linked list

• Let LIST be a linked list in memory which is not sorted, then one searches for
ITEM in LIST by traversing through the list using a pointer variable PTR and
comparing ITEM with the contents INFO[PTR] of each node, one by one, of
LIST. Before we update the pointer PTR by PTR:=LINK[PTR]

• We require two tests. First we have to check to see whether we have reached the
end of list i.e.

• PTR= NULL

• Then we check to see whether

• INFO[PTR]=ITEM

Dayanand Science College Department Of Computer Science 22

Algorithm:
SEARCH (INFO, LINK, START, ITEM, LOC)

LIST is a linked list in memory. This algorithm finds the location LOC of the node where
ITEM first appear in LIST, or set LOC=NULL.

set PTR:=START.

Repeat step 3 while PTR ≠ NULL:

If ITEM =INFO[PTR], then:

Set LOC:=PTR, and Exit.

Else:

Set PTR:=LINK[PTR].[PTR now points to the next node.]

[End of IF structure]

[End of step 2 loop]

[Search is unsuccessful.] set LOC:=NULL.

Exit.

Dayanand Science College Department Of Computer Science 23

• Want to Search For Shree then

101 110 114 117

110 114 117Amar RAJ Neha Shree

HEAD

Dayanand Science College Department Of Computer Science 24

Overflow
• Sometimes new data are to be inserted into a data structure but

there is no available space, i.e. the free-storage list is empty. This

situation is usually called overflow.

• The programmer may handle overflow by printing the message

OVERFLOW.

• In such a case, the programmer may then modify the program by

adding space to the underlying arrays.

• Observe that overflow will occur with our linked lists when

AVAIL=NULL and there is an insertion.

Dayanand Science College Department Of Computer Science 25

UNDERFLOW

• The term underflow refers to the situation where one
wants to delete data from a data structure that is empty.

• The programmer may handle underflow by printing the
message UNDERFLOW.

• Observe that underflow will occur with our linked when
START = NULL and there is a deletion.

Dayanand Science College Department Of Computer Science 26

Inserting at the beginning of a list,

Dayanand Science College Department Of Computer Science 27

101
105

203

203

105

203 105

Dayanand Science College Department Of Computer Science 28

Deleting Node following a given Node.

203

105

105

Dayanand Science College Department Of Computer Science 29

Dayanand Science College Department Of Computer Science 30

Question Bank

1. What is Linked list? Explain it with suitable example.

2. Explain the representation of linked list in memory.

3. Explain Traversing of linked list with suitable example.

4. Explain searching in Unsorted linked list.

5. Write a short note on overflow and underflow.

6. Write a procedure for inserting element in a linked list

7. Explain deleting node in a linked list.

Dayanand Science College Department Of Computer Science 31

