Swami Ramanand Teerth Marathwada University, Nanded SYLLABUS M.Sc. BIOTECHNOLOGY CHOICE BASED CREDIT SYSTEM (June 2019)

Somostor	Codo	Title of the Course	Ur/Woolz	Type of	Credit	Ma	rks	Total
Schiester	Cour		III/ WCCK	Course	Creuit	ESA	MSA	Total
I	BT-I	Cell and Developmental Biology	4	CC	4	75	25	100
	BT-II	Microbiology and Virology	4	CC	4	75	25	100
	BT-III	Biochemistry	4	CC	4	75	25	100
	BT-IV	(A) Techniques in Biotechnology	4	DSE	4	75		100
		(B) Plant Metabolism and					25	100
		Development						
	Lab course-I	and BT-II	4+4	PR	4	100		100
	Lab course-II	Practicals based on course BT-III and BT-IV	4+4	PR	4	100		100
						500	100	600
							-	
Semester	Code	Title of the Course	Hr/Week	Type of	Credit	Ma	rks	Total
	BT V	Molecular Genetics	4	Course	1	ESA 75	25 NISA	100
	BT-VI	Immunotechnology	4		4	75	25	100
	BT VII	Process Biotechnology	4		4	75	25	100
	D1-VII	(A) Enzymology	4		4	15	23	100
	BT-VIII	(A) Enzymology (B) Nanobiotechnology	4	DSE	4	75	25	100
II	Lab course-III	Practicals based on course BT-V	4+4	PR	4			
		and BT-VI				100		100
	Lab aguna IV	Practicals based on course BT-VII	4 . 4	DD	4			100
	Lab course-1v	and BT-VIII	4+4	PK	4	100		100
				-	24	500	100	600
	1	M.Sc. BT S	SY				_	
Semester	Code	Title of the Course	Hr/Week	Type of	Credit	Ma	rks	Total
				Course		ESA	MSA	
	BT-IX	Genetic Engineering	4	CC	4	75	25	100
	BT-X	Industrial Biotechnology	4	CC	4	75	25	100
	BT- XI	Plant Biotechnology	4	CC	4	75	25	100
	BT- XII	English and Science	2	SDC	2	40	10	50
	BT- XIII	Loninum Cation Skins		OE	2	50		
III		artification course NPTEI	2					
		/SWAYM /MOOC of equivalent						50
		credit						
	Lab course- V	Practicals based on course BT-IX	4+4	PR				
		and BT-X			4	100		100
	Lab course-VI	Practicals based on course BT-XI	4	DD	4			100
			4	PR	4	100		100
					24	515	85	600
Semester	Code	Title of the Course	Hr/Week	Type of	Credit	Ma	rks	Total
Semester			III, Week	Course	orean	ESA	MSA	1000
IV	BT- XIV	Computational Biology	4	CC	4	75	25	100
	BT- XV	Pharmaceutical Biotechnology	4	CC	4	75	25	100
	BT- XVI	Environmental Biotechnology	4	CC	4	75	25	100
	BT-XVIII	(A) Animal Biotechnology	4	DSE	4	75	25	100
	(Elective)	(B) Food Biotechnology						
	Lab course-VII	Practicals based on course BT-	4+4	PR	4	100		100
	Lab acuras	XIV + XV + XVI + XVII			L	100		
	Lab course-	Project/ Review Writing	4	PR	4	100		100
	7 111	1			24	500	100	600
						200	100	000

 Note :
 2.

 2. Pattern of Internal Assessment

CC- Core Course, DSE- Discipline Specific Elective, ESA- End Semester Assessment, MSA- Mid Semester Assessment SDC- Skill Development Course, OE- Open Elective

BT -I : Cell and Developmental Biology	
M.Sc. BT FY	Hours: 45

Objective:

Marks: 75

To understand the basics of Cell Biology and developmental Biology. To know the communication as well as transportation in cells. To become aware about the stem cell technology

Outcome:

Students will understand the basics of Cell Biology and developmental Biology and fundamentals of Cancer genetics. They will Identify the characteristics and basic needs of living organisms and ecosystems

Unit I: Study of Cell & its architecture

f cell size and shape, History & Evolution, Cell as the basic unit of life, cell theory, Structural organization of prokaryotes and eukaryotes. Biogenesis of Mitochondria, Chloroplast. Structure of model membrane, lipid bilayer and membrane protein diffusion, osmosis, ion channels, active transport, membrane pumps, mechanism of sorting and regulation of intracellular transport, electrical properties of membranes. Structure and function of Cell wall, nucleus, mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, plastids, vacuoles, chloroplast, structure & function of cytoskeleton and its role in motility

Unit II: Cell-Cell interactions

General principles of cell communication cell adhesion and roles of different adhesion molecules, gap junctions, extracellular matrix, integrin's. Neurotransmission and its regulation. Hormones and their receptors, cell surface receptor, signaling through Gprotein coupled receptors, signal transduction pathways, second messengers, regulation of signaling pathways, bacterial and plant two component systems, light signaling in plants, bacterial chemotaxis and quorum sensing. Regulation of hematopoiesis,

Unit III: Cell division & Cancer genetics

Mechanism of cell division mitosis, meiosis and genetic recombination; regulation of cell cycle; factors and genes regulating cell cycle. Genetic rearrangements in progenitor cells, oncogenes, tumor suppressor genes, cancer and the cell cycle, virus-induced cancer, metastasis, interaction of cancer cells with normal cells, apoptosis, therapeutic interventions of uncontrolled cell growth

Unit IV: Developmental Biology

Gametogenesis, Fertilization, cleavage, blastulation, Gastrulation & formation of germ layers in animals, Concepts of competence, determination, commitment and differentiation (dedifferentiation, re-differentiation, trans-differentiation) developmental plasticity in plant. Sex determination in plants & animals.

Unit V: Gene patterning & stem cells

Role of gene/s in patterning and development e.g. *Arabidopsis thaliana* (root, shoot, leaf & flower) & *Drosophila melanogaster* (maternal genes, bicoid, gap genes), Stem cells.

Text and Reference:

- 1. David Sadava; Cell and Molecular biology- Jones & Bartlett Publishers
- 2. Cell & molecular biology Gerald karp : John Wills
- 3. Developmental biology- SF Gilbert Sinauer associates.
- 4. T.A. Brown Genomes Garland Science
- 5. Molecular Biology of the Cell- Alberts, B –Garland Science
- 6. Molecular cell Biology Darnell, Lodish, Baltimore,-W.H. Freeman
- 7. Reproduction in Eukaryotic cells- DM Prescott, Academic Press.
- 8. Cell in Developmental and Inheritance- EB Wilson, MacMilan New York.
- 9. Fertilization-F T logo-Chapman and Hall
- 10. Molecular Biology of Steroid and Nuclear Hormone Receptors- LP Freedman,
- 11. Molecular Cloning: a Laboratory Manual- J. Sambrook, -CSHL Press,

PRACTICALS:

- 1. Microscopy: Bright field & phase contrast & fluorescence microscopy
- 2. Cell types of plants- Microtomy/ maceration of various tissue explants and identification
- 3. Study of Mitosis and Meiosis (root tips and anthers)
- 4. Study of karyotypes of genetic disorders and normal
- 5. Cell fractionation and separation at cell organelles chloroplast and Mitochondria
- 6. Pigment separation by TLC & Chromatography.
- 7. Analysis of chlorophyll amount by Spectrophotometer.
- 8. Drosophila culture: Cultivation, maintenance and Drosophila genetics study
- 9. Study of chick/ Frog/ Plant embryo for developmental study.