

UNIT III
TRANSPORT LAYER

 Introduction:
The network layer provides end-to-end packet delivery using data-grams or virtual

circuits. The transport layer builds on the network layer to provide data transport

from a process on a source machine to a process on a destination machine with a

desired level of reliability that is independent of the physical networks currently in

use. It provides the abstractions that applications need to use the network.

Transport Entity: The hardware and/or software which make use of services

provided by the network layer, (within the transport layer) is called transport

entity.

Transport Service Provider: Layers 1 to 4 are called Transport Service Provider.

Transport Service User: The upper layers i.e., layers 5 to 7 are called Transport

Service User.

Transport Service Primitives: Which allow transport users (application

programs) to access the transport service.

TPDU (Transport Protocol Data Unit): Transmissions of message between 2

transport entities are carried out by TPDU. The transport entity carries out the

transport service primitives by blocking the caller and sending a packet the service.

Encapsulated in the payload of this packet is a transport layer message for the

server‟s transport entity. The task of the transport layer is to provide reliable, cost-

effective data transport from the source machine to the destination machine,

independent of physicalnetwork or networks currently in use.

TRANSPORT SERVICE

1.Services Provided to the Upper Layers
The ultimate goal of the transport layer is to provide efficient, reliable, and cost-

effective data transmission service to its users, normally processes in the

application layer. To achieve this, the transport layer makes use of the services

pro-vided by the network layer. The software and/or hardware within the

transport layer that does the work is called the transport entity. The transport

entity can be located in the operating system kernel, in a library package bound

into network applications, in a separate user process, or even on the network

interface card.

Fig 4.1: The network, Application and transport layer
There are two types of network service

o Connection-oriented

o Connectionless

Similarly, there are also two types of transport service. The connection-oriented

transport service is similar to the connection-oriented network service in many

ways.

In both cases, connections have three phases:

o Establishment

o Data transfer

o Release.

connectionless transport service is also very similar to the connectionless network

service.

upper layer(s) are the transport service user.

2. Transport Service Primitives

To allow users to access the transport service, the transport layer must provide

some operations to application programs, that is, a transport service interface. Each

transport service has its own interface.

The transport service is similar to the network service, but there are also some

important differences.

The main difference is that the network service is intended to model the

service offered by real networks. Real networks can lose packets, so the network

service is generally unreliable.

The (connection-oriented) transport service, in contrast, is reliable

As an example, consider two processes connected by pipes in UNIX. They assume

the connection between them is perfect. They do not want to know about

acknowledgements, lost packets, congestion, or anything like that. What they want

is a 100 percent reliable connection. Process A puts data into one end of the pipe,

and process B takes it out of the other.

A second difference between the network service and transport service is whom

the services are intended for. The network service is used only by the transport

entities. Consequently, the transport service must be convenient and easy to use.

Table:4.1 - The primitives for a simple transport service.
Eg: Consider an application with a server and a number of remote clients.

1. The server executes a “LISTEN” primitive by calling a library procedure that

makes a

System call to block the server until a client turns up.

2. When a client wants to talk to the server, it executes a “CONNECT” primitive,

with “CONNECTION REQUEST” TPDU sent to the server.

3. When it arrives, the TE unblocks the server and sends a “CONNECTION

ACCEPTED” TPDU back to the client.

4. When it arrives, the client is unblocked and the connection is established. Data

can now be exchanged using “SEND” and “RECEIVE” primitives.

5. When a connection is no longer needed, it must be released to free up table

space within the 2 transport entries, which is done with “DISCONNECT”

primitive by sending “DISCONNECTION REQUEST”

MULTIPLEXING:

In networks that use virtual circuits within the subnet, each open connection

consumes some table space in the routers for the entire duration of the connection.

If buffers are dedicated to the virtual circuit in each router as well, a user who left a

terminal logged into a remote machine, there is need for multiplexing. There are 2

kinds of multiplexing:

Figure 4.8. (a) Upward multiplexing. (b) Downward multiplexing

(a). UP-WARD MULTIPLEXING:
In the below figure, all the 4 distinct transport connections use the same network

connection to the remote host. When connect time forms the major component of

the carrier‟s bill, it is up to the transport layer to group port connections according

to their destination and map each group onto the minimum number of port

connections.

(b). DOWN-WARD MULTIPLEXING:

the

performance will be poor.

 are mapped onto one network connection, the

service

will be expensive.

The possible solution is to have the transport layer open multiple connections and

distribute the traffic among them on round-robin basis, as indicated in the below

figure:

With ‘k’ network connections open, the effective band width is increased by a

factor of ‘k’.

Connection Oriented Transport service(TCP)

Connection oriented services modeled after the telephone system.

 To use a connection-oriented network service, the service user first establishes a

connection, uses the connection and then releases the connection.

 The essential aspect of a connection is that it acts like a tube: the sender pushes

objects (bits) in at one end, and the receiver text them out at the other end. In most

cases the order is preserved so that the bits arrive in the order they were sent.

 In some cases when a connection is established, the sender receiver and the subnet

conduct a negotiation about parameters to be used, such as maximum message

size, quality of service required and other issues. Typically, one side makes a

proposal and Other Side can accept it reject it or make a counter proposal.

Reliable connection oriented services has to minor variations : reliable message

streams example: sequence of pages, Reliable byte stream example: remote login

and unreliable connection digitized voice.

Connection oriented transmission has three stages. These are:

 connection establishment: The connection oriented services, before transmitting

data first the sender has to establish the connection by which data can be sent.

 data transfer: after the connection gets established, the sender starts sending data

packets to the receiver.

 connection termination: after all the data gets transferred the connection has to

be terminated

Connectionless Services Transport service(UDP)

Connectionless : connectionless service is model after the Postal System.

 Each message (letter) carries the full destination address, and each one is routed

through the system independent of all the others. Normally when two messages are

sent to the system destination, the first one sent will be the first one to arrive.

however it is possible that the first one sent can be delayed so that the second one

arrives first.

Each service can be characterized by a quality of service. some services are reliable

in the sense that they never lose data. Usually, a reliable services implemented by

having the receiver acknowledge the receipt of each message so the sender is sure

that it read arrived.

 Unreliable (meaning not acknowledged) connectionless service is often called

datagram service in analogy with Telegram service, which also does not return

and acknowledgement to the sender example emails.

 The acknowledged datagram service can be provided for these applications. It is

like sending a registered letter and requesting a return receipt. When the receipt

comes back, the sender is absolutely sure that the letter was delivered to the

intended party and not losing along the way. Example: Registered Mail.

The request-reply service, In this service the sender transmits a single datagram

containing a request; that reply contains the answer, Ex: Database Query.

TCP CONGESTION CONTROL:
TCP does to try to prevent the congestion from occurring in the first place in the

following way:

When a connection is established, a suitable window size is chosen and the

receiver specifies a window based on its buffer size. If the sender sticks to this

window size, problems will not occur due to buffer overflow at the receiving end.

But they may still occur due to internal congestion within the network. Let‟s see

this problem occurs.

Figure 4.16. (a) A fast network feeding a low-capacity receiver. (b) A slow

network feeding a high-capacity receiver.

In fig (a): We see a thick pipe leading to a small- capacity receiver. As long as the

sender does not send more water than the bucket can contain, no water will be lost.

In fig (b): The limiting factor is not the bucket capacity, but the internal carrying

capacity of the n/w. if too much water comes in too fast, it will backup and some

will be lost.

the congestion window

to the size of the max segment in use our connection.

timer goes off, it adds one segment s worth of bytes to the congestion window to

make it two maximum size segments and sends 2 segments.

by one max segment size.

time, the congestion window is increased by the byte count corresponding to „n‟

segments.

occurs or the receiver‟s window is reached.

“threshold” in addition to receiver and congestion windows.

Different congestion control algorithms used by TCP are:

-off Re-transmission Timer Management

TCP TIMER MANAGEMENT:

TCP uses 3 kinds of timers:

1. Retransmission timer

2. Persistence timer

3. Keep-Alive timer.

1. Retransmission timer: When a segment is sent, a timer is started. If the

segment is acknowledged before the timer expires, the timer is stopped. If on the

other hand, the timer goes off before the acknowledgement comes in, the segment

is retransmitted and the timer is started again. The algorithm that constantly adjusts

the time-out interval, based on continuous measurements of n/w performance was

proposed by JACOBSON and works as follows:

for each connection, TCP maintains a variable RTT, that is the best current

estimate of the round trip time to the destination inn question.

acknowledgement takes and to trigger a retransmission if it takes too long.

es how

long the measurements took say M

RTT = αRTT + (1-α) M

Where α = a smoothing factor that determines how much weight is given to

the old value. Typically, α =7/8

Retransmission timeout is calculated as

D = α D + (1-α) | RTT-M |

Where D = another smoothed variable, Mean RTT = expected acknowledgement

value

M = observed acknowledgement value

Timeout = RTT+(4*D)
2. Persistence timer:

It is designed to prevent the following deadlock:

iver sends an acknowledgement with a window size of „0‟ telling the

sender to wait later, the receiver updates the window, but the packet with the

update is lost now both the sender and receiver are waiting for each other to do

something

 the persistence timer goes off, the sender transmits a probe to the receiver

the response to the probe gives the window size

3. Keep-Alive timer: When a connection has been idle for a long time, this timer

may go off to cause one side to check if other side is still there. If it fails to

respond, the connection is terminated.

Principles of Reliable Data Transfer

The internet network layer provides only best effort service with no guarantee that

packets arrive at their destination. Also, since each packet is routed individually it

is possible that packets are received out of order. For connection-oriented service

provided by TCP, it is necessary to have a reliable data transfer (RDT) protocol to

ensure delivery of all packets and to enable the receiver to deliver the packets in

order to its application layer.

A simple alternating bit RDT protocol can be designed using some basic tools.

This protocol is also known as a stop-and-wait protocol: after sending each packet

the sender stops and waits for feedback from the receiver indicating that the packet

has been received.

Stop-and-wait RDT protocols have poor performance in a long-distance

connection. At best, the sender can only transmit one packet per round-trip time.

For a 1000 mile connection this amounts to approximately 1 packet (about 1500

bytes) every 20 ms. That results in a pathetic 75 KB per second rate.

To improve transmission rates, a realistic RDT protocol must use pipelining. This

allows the sender to have a large number of packets "in the pipeline". This phrase

refers to packets that have been sent but whose receipt has not yet verified by the

receiver.

Principles

The following tools are essential for any RDT protocol implemented on top of an

unreliable network.

Error detection

Sequence numbering

Feedback

Timers

Error Detection

The data link and network layers have error detection for detecting bit errors in

packets. However, error detection schemes can never detect all errors so it is

helpful to have additional error detection in the transport layer to reduce the

frequency of undetected errors.

Lower layer protocols with error detection usually have a simple policy for dealing

with errors: discard the packet. A transport layer RDT protocol typically just does

the same thing, letting its algorithm for dealing with missing packets deal with the

problem. Since the lower layers may discard packets an RDT protocol must allow

for the possibility that a receiver is not even aware of an attempted transmission.

Sequence Numbering

Packets in the network layer are routed individually. This makes it possible that

they are received in a different order than they are transmitted. Sequence

numbering is essential for restoring the transmitted order.

Feedback

Feedback involves information sent by the receiver back to the sender about

reception of sent packets. This is essential for recovery of missing packets. The

feedback takes the form of acknowledgments (ACKs) with one of three forms:

Negative acknowledgment - "I did not receive the packet with sequence

number sn."

Positive individual acknowledgment - "I received the packet with sequence

number sn."

Positive cumulative acknowledgment - "I have received all packets with sequence

numbers up to but not including sn."

Most reliable data transfer protocols use only one of these types of

acknowledgment. Negative acknowledgments are useful in human communication,

but only because the acknowledgment is not lost, though it may be garbled. Since

negative acknowledgment packets can be lost in the internet, they are not useful.

They will not be considered in this presentation.

Cumulative acknowledgments allow acknowledgment of numerous packets at a

time. They can be useful in pipelined protocols.

Timers

Packet loss in the network layer does not discriminate between data packets and

acknowledgment packets. A sender in a reliable data transfer protocol needs to set

a timer for transmitted packets. Generally the sender does one of two things:

Resends a packet after a timer fires.

Sends a new packet after an acknowledgment (positive) arrives.

If an acknowledgment arrives before the timer fires the sender stops the timer so

that it will not fire.

