Metric Spaces

Analysis is mainly concerned with processes pertaining to limits. lp this ;hapl'tef :eb?hanhsmdy_these
processes in a general setting. We recall that in the theory of functions of real va ad ;s ﬁE e nqno.nigf
distance plays a vital role in formulating the definition of cor‘wfargence, continuity and dif ere,mlablhty.
Metric spaces are sets in which there is defined a notion of d:sran.ce {)enveen pair of points find they
provide the general setting in which we study convergence and continuity. The concept of metric spaces

was formulated in 1906 by M. Fréchet. ' N |
The first section of this chapter is devoted mainly to basic definitions and important examples of

metric spaces. We shall study the concepts of open sets, closed sets, convergence, continuity, compactness
and connectedness in the later sections. We shall also prove in this chapter a simple result about complete
metric spaces, Banach’s Fixed point theorem, that has interesting and important applications in classical

analysis.

1. DEFINITIONS AND EXAMPLES

Definition. Let X be a non-empty set. A metric on X is a real-valued function d: X x X — R which
satisfies the following conditions: i ' :

o (1) dx,y)20,Vx,yeX,
_ (2) dix,y)=0ifandonly ifx=y, Vx,y € X,
(3) dx,y)=d,x), Vx,y€ X (symmetry),
f’;ﬂj d(x, y) <d(x, z) +d(z;»), V x, y, z € X (triangle inequality).

A metric d is also called a distance function, and the non-negativ is to be
AR s S . e real number d(x, y) 1s 10
thought of as the distance between x and y. ' g dx, )

A metric space is a non-empty set X equipped with a metric d on X and is denoted by the pair (X, &

or simply X. Different metrics can be defined i i o i isti
: on a single non- istinct
metric spaces. gle non-empty set and this gives rise t0 d

ILLUSTRATIONS
1. The function d: R x R — R defined by

| ) dx,y)=|x-y|, Vx,yeR
s a metric on the set R of all real numbers, since for x, y, z € R, we have

dxy)=1x=y|<|x=z|+|z - y|=d(x,z) +d(z, y)

o Y



The number d(x, y) is, of course, the usual ‘distance’ between the poj
' : 5 points x,
line. Therefore d is sometimes referred to as the usual metric on R. Y on the real

2. The function d defined by
d(zl,22)=|zl—22 |, VZ“ZZ EC

is a metric on the set C of all complex numbers. To prove the triangle inequality it is sufficient
to prove that
lzl+ZZIS|zll+|zzl, VZI,ZZEC

This follows from the following:
12,42, F =(z +2,) G +3,)
=2z + 22, +2y2 + 2,2
=27 +2Re(z 3,) + 3,7,
Slaf+20z| |z l+Inf=(z1+|z >
3. Let X be an arbitrary non-empty set. The function d defined by

l, ifx#y

d(x'y)={o if x=y

is a metric on X and is called the discrete (trivial) metric on X, and (X, d) is called the discrete
metric space or the trivial metric space.
} The set /_ of all bounded sequences {x,} of real numbers with the function d defined by

d({x,}, 0.}) =sup {|x, -y, [:ne N}V {x,}, {5} €L,
is a metric on /..
Forthemanglemequallty,wehach{x} ot {z,) €L,
Vo =% =2y + 2, = Y |S1 X0 = 2, |+ ]2, = Yl

VI.yEX -

| x, =
sup | x, — Y, | Ssup | x, =2, |+sup|z, =,
ie, d({x,} ) Sd(x,}, (z,) +d{z,} ) -

5. The set C[0, 1] consisting of all real-valued continuous functions defined on [0, 1] with the
function d given by

i, =170 -g)1d ¥ f.geCloN

is a metric space.
The set C [0, 1] with another metric d defined by
d(f,g) = sup | f(x) 8% l»

xe[0.1] '
The metric d is called the Tehebyshev metric Ot Sup me.mc.

is a metric space.

vV f,g€Cl[0.1]




i i b
7. The set C of complex numbers with the metric d defined by
x| +|yl, £ x#FY

d(x.y)={0, ifx=Yy

is a metric space.

In the following examples
verify and are left to the reader.

(2) and (3) of definition of the metric are easy tg

ditions ( 1 ); 3
e the triangle inequality.

We shall verify only
n-tuples with the function d defined by

Example 1. Show that the set R" of all ordered

gﬁ . Ys) €ER”

Y2
(x; _J’:)zJ LV x = (X, X e x,), ¥y =Y

i=

d(x, .v)=[>":|

ed the Euclidean metric on R").
ty we shall use the following Cauchy-Schwarz inequality:

< JE af p bf
k=1 .knl

where a=.(a,,a2,...,a,,),andb=(b,,bz,...,b,,)eR”

is a metric space (d is call
a To prove the triangle inequali

X a; b

k-!

\a
If b, =0, for 1<k <n, then there is nothing to prove.
Assume that b, # 0 for some k[ls_k sﬁ, ﬁ;en 2 bf > 0.

k=1

If x is any real number, then we have

L (@ -xb)' 20

ie., 2 = i g &
k§1 % 2x t‘él ay bk +X &E-‘I bk 20

This is true for all x € R, and 3 b o
b x€R, and El by >0, therefore the discriminant of the quadratic in x is non-
positive and hence

(n 2
3 n
>< \kz-:la" b“) <la X b}

k=] k=]

s ﬁ 2 " V2
t-;a*) (F_ﬁ} :

i.e.,




S
For the triangle inequality, consider

12 . /272
Be-u) +[Een)
[ ( O 3 b )z
¥2 . 1/2
= }: (% - z:) + Z (z - ) +2 (Z _zl)%J [Z (z ')’1)2)
j . i=l

—

=

isl =]
Q i - i'/'L

2 ,g (x; —21)2 ¥ é: (2 _J’:)2 *+2 21 Wi=adis =)

(Using Cauchy-Schwarz inequality)

= é{ [(x, =2)+(z "yi)]2 =§ (x; _}’f)z

)

i 12 112 . 1/2
(El (% - z;)zJ (Z (z, -y J 2 (g:l (e~ }’;‘)2)
ie., d(x,y)<d(x,z)+d(z,y), VxyzeR"

We now generalise R” to ‘infinite-tuples’ which are sequences, and generalise the above Euclidean
metric to the function

. 1/2
d({xﬂ}’ {yn}) = (§I (xr.- - yn)ZJ

; ; .5 2 - .
d is well defined if the series E (x, = ¥,)" converges, and so we must restrict ourselves to those

sequences {x,} for which the series Z x converges.

n=l

Let /, be the set of all real sequences {x,}, for which the series Z: . converges, ie., X X; <.
n= n=]

Example 2. Show that the function d defined by
d(tx,}, ) =[Z (=217 ) 0} €

is a metric on /,. The metric space (/,,d) is known as a Hilbert space.
s First we have to show that d is well defined. For this, let {x,}, {y,} €/, then by the Cauchy-
Schwarz inequality

)3 lxkllyklsﬁf !xkf’J()iZ Iy;I’J, VneN
k=1 k=1 k=1
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or the triangle inequality, consider

" V2 n 1/2 2
(o) (o

[ = TR I
=i(x:-z;)2+i(z-—y.)2+2 3 2!7/2 L ¥2
e il S i= 1(x' ~ &) [;—21 (z - J’:JZJ
A" o b,

2 n _ 2 + n _— 2 n
E‘ (xj zl) E’l (z: ya) +2 E‘I (xi = zi)(zf -¥)
(Using Cauchy-Schwarz ineguality)

: : 12 . ) 12 . 12
(El (x; — z) ) ¥ (E{ (z =) ) 2 [El (x; - yi)z)

ie., d(x,y)<d(x,z) +d(z,y), Vx,yz€eR"

We now generalise R” to ‘infinite-tuples’ which are sequences, and generalise the above Euclidean
metric to the function

. 12
AN (}51 = y,,f]

. ; .5 -
d is well defined if the series 2] (x, — ¥.)" converges, and so we must restrict ourselves to those
. o

sequences {x,} for which the series 2-'1 X, CONVerges.
Let 1, be the set of all real sequences {x,}, for which the series gl x2 converges, i.., 2_11 X2 <o,

Example 2. Show that the function d defined by
d({x,}, {v,,})—[E (x, =¥ 5k Dad €

is 2 metric on /,. The metric space (1. d) is known as a Hilbert space.

well defined. For this, let {x,}, {1,} € l,, then by the Cauchy-

s First we have to show that d is
Schwarz inequality

él|xk||yx|5 [Eilxklz}[kgllyklzls VneN




. 2
é X Vil S ‘KEI fo (E'l y:) < J(EI xf) (&E )’fJ < oo

This implies 2 x,y, converges absolutely and hence converges.
n=1

Thus, the series }:, (x, = ¥»)" being the sum of the three convergent series Z oy =2 E{ %

and X y; is also convergent.
n=|

Now from the Cauchy-Schwarz inequality we have by taking limits as n — oo

lzxx ytls‘/(gl f)(& nyJ (1)

To prove triangle inequality, let {a,}, {5,}, {c,} € /5.
Put x,=a,-b,, y,=b,-c,, VneN

M3

Then the triangle inequality in /, takes the form:

2 (x, +3,)" < X 5, + S 5
n= n=

n=1

This follows from equation (1), since

n b3

5t =2 423 x, 5, + 3 52
n=1 n=1 n=1

s}oflx,f-rz\/():xf)():yf) +3 )2
n= n=1

1 1)2
=((Ex3) +(Zy,f]}.
n=1 n=]
Example 3. Show that the set R” with d” defined by

li'(x,_y) ::;E:IJ& _.}ﬁ'

is a metric space (d” is called the rectan
= For the triangle inequality, consider

-

.

gular metric on R").

n
d0)=3(x -y <%
(x, ) El'x" yil-féle'_zf'*'zf—yil




T ey e s

SE'II'"‘ZJ'*‘ 2|z

Im)
=d'(x, 2) + d'(z, ¥),
Since the metrics d and ¢’ of examples (1) and

different metric spaces (R, d), and (R”, g') win the same set ¥ = R”,
Note that these metrics satisfy the inequality:

-l

VxyzeR"

(3) are different functions, therefore we get

d(x, ) Sd'(x, y) sV d(x, y).

Example 4. Prove that the set C [q, b] of 4] real-valued functions continuous on the interval [a, b]
with the function d defined by

b 1/2
d(f. g) = [L ()= 500" o
is a metric space.

To establish triangle inequality we neeq the following:
s Consider the function, for ¢ e[q, b]

0= (¢ f)+ g o

e jb F2(x) dx + 21 _[b f(x) g(x) dx + J'b g2 (x) dx

Since ¢(f) 20, V 7 €[a, b, therefore the discriminant of the quadratic in  should be non-positive,
and so

Lrosma) s | FL

b b V2 o 1/2
ie. _[ f(x) g(x) dx < ( J' Fi(x) dx) [_[ g2 (x) afx) (1)
Now consider

2

, oo, 12
[U U-Ho* ]+ ([ o - g J

=[0G =m0y de+ [ (o) - gy
“ b V2 r 12
+2 (j (f(x) - h(x)? dx] [ [ ) - gap? dx]
2 [ 0 - b e+ [ 1) - g0 e

+2 [ (700~ hCo) (k) - g(a) i fusing (1)




< [ ()= ) + ) - 83 e = [ (1) - g(0)?

Hence
112

B, za
(L@ - gy &) (L () - W) a&)

" 112
' ( [ (hx) - gy dx] _
| Example 5. Let (X, d) be any metric space. Show that the function 4, defined by

d(x, y)

dy(x, y) =m

, Vx,yelX

is a metric on X.
s For the triangle inequality we proceed as follows:

Using the triangle inequality for the metric d, we have forall x, y, z € X

d(x,y)<d(x,2)+d(z, )

or 1+d(x,y)<1+d(x,2) +d(z, y)

or ) l~-————1 <l1- i -
: 1+d(x, y) 1+d(x,2) +d(z, )

. dxy) _d(x2)+d( )

1+d(x,y) 1+d(x,z)+d(z y)

d(x, z) N d(z, y)
T 1+d(x,2) 1+d(z, y)

ie., di(x, y) <d,(x,2) + d,(z, ).

Example 6. Fréchet Space. Let X be the set of all sequences of complex numbers. We define the
function d by

s 1 |x =y
d(x! =Z_‘ - .
») n=12" (1+|x, =y, )

Vx={x}, y={leX

The function d is well defined, since the nth term of the above series is less than 2% therefore it is

convergent. To prove triangle inequality we first establish the following inequality.
Let 0< @ < B, then
—

a+ofsp+ap




g

ding poth sides by (1 + o) (1 + B), we obtain

pivi

B i1}
l+a 1+

Now for any X = {x,} y = {y,} and z = {z,} in X, we have
0S|x,—y, 1S|x, =2, |+|z, =y, |
So from (1) it follows that
1% =Vl Ly =i, L4 2, — 2, |
L4l =yl 1% =2 %]z =9,

& ]xn_zni |Zn—yn‘
ik |ay~ay | 14{a, =l

Multiplying both sides by 27" and summing w.r.t. n, we get
d(x,y)<d(x,z)+d(z, )

Hence, (X, d) is a metric space.
The very definition of a metric presents the concept of the distance from one point to another. V\fe
now define the distance from a point to a set and the distance between two non-empty subsets of a metric

space.
For any two non-empty subsets 4 and B of a metric space (X, d), the distance between them denoted

by d(4, B) is defined as:
d(A, B) =inf {d(a,b):a€ 4, be B}.
If x is a point of X, then the distance from x to A denoted by d(x, A) is defined as:
d(x, A) = inf {d(x,a): a & A}.
fA={xeR:0<x<]} and d is the usual metric, then
d(0, A) =0, although 0 ¢ A.

Similarly d(4, B) = 0 does not imply that 4 and B have common elements, as can be seen by the
following example.
! 1
Example 7. Let X = {1, >

Let A= 1ll : ,...t, and
35 2n -1

B={111 _1_} | ™

2°4° 6" 2n
Then d(4, B) = 0, although 4 N B = ¢.




Diameter of a Non-Empty Set

Definition. The diameter of any non-empty subset 4 c X denoted by d(4) is defined as:

d(A) = sup {d(a, b): a, b € A}.

If d(A) < e then the diameter of 4 is said to be finite otherwise infinite.

By convention d(¢) = — .
Definition. A metric d on a non-empty set X is said to be bounded if there exists a real numbe,

k > 0 such that
d(x, y) Sk, Vx,yelX

d(X) <k,
(X, d) is then called a bounded metric space, otherwise unbounded.
be the extended set of real numbers (i.e., the set of real numbers including — o

Le.

Example8. Let R,

and + oo).
Tue function d defined by
d(x,}’)=|f(x)"f(y)], VI,yERm
where f (x) is given by
= , when —eo < x <o
1+[x|
f(x)=J 1, when x = oo
-1, when x = — o0

Show that (R, d) is a bounded metric space.

m For the triangle inequality

x y |

R PYTINFITY
:' y . ' . &8 X
l”'xl 1+|z| 1+|z| 1+]|y]
gl x __#% l+l z )
T+ lx] " Tz 1zl 141y

=a’(x,z)+d(z,y), Vx;y,ZER




V’
B,

I\

lfxz“". y:—m, then

{oa®

L+ z]

Cdxn ) =l1-(=1)|s

+

1+]|z]|

o
=d(x,2) +d(z, y)

gimilarly when X = =9, y =+ co, the triangle inequality holds,

Hence (Ro,d) is a metric space.

Moverover, if x and y are two elements of R_ then

-1< f(x)<1, and =1Sf(N<S1
d(x,y)=|f(x)—-f(y)}$2, VI')/ER-.

Hence (R.. d) is a bounded metric space.

EXERCISE

1. Let X be a non-empty set and a function d from X X X into R satisfies :
(#) d(x,y)=0,ifand only ifx =y, and
(@) d(x,y)<d(x,z)+d(y,z). Vx yzeX.
Prove that (X, d) is a metric space.
[Hint: Take y = x, in (if), d(x, z) 2 0. Take x=zin (if), d(z, y) £d(y, z) and interchange the role of y and z.]
2. Show that the conditions '
() d(x,y)=0,if and only if x =y, and
(i) d(x,y)<d(x,2)+d(z,y), Vx, pzeX

are not sufficient to ensure that the function d : X x X — R is a metric on a non-empty set X.

3. Give an example of a function d : X X X — R defined on a non-empty set X satisfying the following three
conditions but not a metric on X.

() d(x,y)20,and x=y=d(x,y)=0

@) dx,y)=d(y,x), VxyeX

(i) d(x,y)<d(x,z2)+d(z,y) Vx pzeX
[Hint: Take X = Rz,d(x, y)=|x -y |, where x=(x,x,),y=(y,»,) Such a metric is called a
Pseudometric.)

3



4 Prove that if (X, &) is a metnic space, then
|d(x, 2) ~d(yv,2)|Sd(x,y), Vx,y,2¢X.
| Himt: Apply triangle inequality 10 dlx, 2) and Ay, 7) separately. |
S Prove that, if (X, o) 1 a metric space. and 3, v,, v,, .1, € X, then
Jl\‘,,l,)Sd{l‘,.lzi‘d(l,.l,)*d{l",x‘)}.."Fd(,t._‘.x‘jl
6 Functions 4, and 4. from R x R -3 R are defined by

di(x.y)=exp (|x -y}, and dy(x, y) = max [x - y, 0).
Is cither &, or 4, ametncon R ?
7 Prove that the function 7 *: R" x R" <3 R defined by

d(x.)=max|x, =yl Vr=(x,% . .5)hy=(.y..5)eR"

1Sicm
1 ametnc on R”. Also prove that

d*(x,y)sd(x,y) S J;d‘(x. v), Vx.yeR"
where  is the Ewclidean metricon R”.

& Coasder the set /, of all sequences {x, } of complex numbers satisfying the convergence condition i 2P <m
m=| ’
for some fixed p 2 |, where the distance between points is defined by

n=]

- "r'p
d(x.y)=[}: | % = I"} » Vx={x,},y={,lel,

~

Show that U‘,. d) is a metric space.
[Hint. dx, y) is well defined, can be seen by using, Minkowski s inequality:

i Vp =5 A\ Ve
(Zinenr] s(Zinb] f(Enr] . venonen

9. Let H_ denote the set of all real sequences {x,} suchthat |x, [<1,V ne N, then prove that the function 4
defined by

d(teh ) = I g e

is ametricon H_ [(H_.d) is called the Hilbert-cube).
10. Let (X.d,),(X,d,) be two metric spaces and k is a positive real number. Which of the following are metnc
spaccs:
(X, kdy), (X, Jd,). (X,d}), (X, min (1,d))), (X, d\d),
(X.d, +d,), (X ,max (d,, d,)), (X, min (d,, d,))?
11. Prove that the function d : C X C = R defined by
2|x -yl

I+ 1+ pf

d(x, y) =

is a metric on the set of all complex numbers.
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4 i - Am, n) =0, ifm=n and for m*n dimn =1/
"gsir'mrumamﬂﬁpkofl Prove that (V. d) is a hounded metric space
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asrsh asreh
s 8 metnic 00 Cla.b).
. wjdskmmm-anptymbmsofamcmtk‘,
1

that
m::" A c B. then d(A) <d(B),

i) d(AV B) < d(A)+d(B) +d(A, B)
i) f AN B # ¢, then d(A v B) <d(A) +d(B).

, OPEN AND CLOSED SETS

this section We shall study the concept of neighbourhoods, open sets and closed sets m a metnic space
:}. d)and develop some of the important results relating to these concepts. We begin by defining open
spheres and closed spheres.

24 Openand Closed Spheres

Let (X, d) be any metric space, and a € X. Then for any r > 0, the set
S,(a)={xe X:d(x,a)<r}
is called an open sphere (or open ball) of radius r centered at a.
The set
S[al={xeX:d(x,a)<r}
is called a closed sphere of radius r centered at a. It is clear that
[ s@c s,[afj
for every a € X, and for every r > 0. -

ILLUSTRATIONS

1. In the metric space (R, d) of real numbers with the usual metric d, the open sphere §, (a) is
the open interval Ja - r, a + r[, and the closed sphere S,[a] is the closed interval [a - r, a * ],
where a € R, and r > 0.




2. In the di

e discrete space (X, d), the open sphere S,(a) for a € X is given by
{a}, if0<r<l
X, ifr>1

S,(a) = {
and the closed sphere S,[a] is given by

, if 0 ]
g P B0
X, ifr=l

3. The open sphere in the complex plane is the inside of a circle with center at a and radius r,

4. The open sphere S.(f,) in the metric space Cla, b] of all real-valued continuous functions

defined on [a, b] is a strip of width 2 centered on the graph of /.
e x and radius 7. Let 4 be

Example9. Let (¥, d) be a metric space and S, (x) the open sphere with centr
a subset of X with diameter less than r, which intersects S, (x), then 4 S50 (%)-

m Since ANS,(x)#¢, letae AN S,(x)

then dax)<r, ac 4, r>0
Let y be an arbitrary element of 4 then by triangle inequality
d(y, x) <d(y, a) +d(a x) [ y,a€dandd(4)<r]
<r+r=2r

This implies y € S,, (x).

2.2 Neighbourhood of a Point
A subset N, of Xis called a neighbourhood of a point a € X,

Let (X, d) be a metric space and a € X.
if there exists an open shpere S, (a) centered at @ and contained in N,; ie., S,(@) € N, for some

r>0.
s a neighbourhood of each of its points.

(&- Example 10. Every open sphere i
'@- Let S,(a) be an open sphere, and xe S,(a). fx=a,thenae N, C S, (a). Therefore suppose
that x # a. In order to show that S, (a) is a neighbourhood of x, we must show that there exists

7, > 0 such that

S, () € S,(a)
Now x € 8, (a) implies d(x, a) <r. Take r, =r — d (x, a).
Then ¥ € S, (¥) implies by using triangle inequality
diy,a)<d(y,x)+d(x,a)<n +d(x,a)=r
yeS,(a)
S, (x) € §,(a).

ie.,

Hence
2.3 Open Set
Definition. A subset G of a metric space (X, d) is said to be open in X with respect to the metric ¢ if
G is a neighbourhood of each of its points. In other words, if for each a € G, there is an r > 0 such ‘it

S,(a) cG.




(LLUSTRATIONS
The empty set @ and the entire NP

Every open sphere is an open wet,

Let 4 be the annulus conglsting of the COMPlex mumbers 2 sugl that | - | 2| < 2 with the usual
metric d, then 4 is open,

© N with any merrie HIE Ofier sols

lad PJd ==

4 Thesubset S = {(x, y): x e e l, A
set.

5. Thesubset 4 = {(x, ¥): v* < v v, e RY of R with (he Puclidean metric is an open set.

6. Let 4={fe€a,b)]: ‘_-jl_llfﬂ T =01 Then 4 iy Open with respect to the sup metric in
C [a, b].
Example 11. Show that every set in a discrole Space (X, d) in open,

s Let G be any non-empty subset of the discrete Space (Y, o) and x be any point of G. Then the open

sphere §, (x) with r <1 is the singleton set v} which is contained in G le., each point of G is the
centre of some open sphere contaned in ¢, | particulur, each singleton set is open.

Example 12.  Show that on the real line w

VERE Of Y with the I'uclidean metric is an open

ith the usual metric the singleton set {x} is not open.

»  For the metric space (R. d) each open sphere S, (x) is the bounded open interval Jx - r, x + r and
for no value of » (how so-ever small it may be) this sphere is contained in {x}.
Hence {x) is not open in (R, 4).

Example 13. Let R be the set of reals, d the usual metric and d’ the discrete metric on the same set

R. Then show that every singleton set {x}, xe R is open in (R, d’) but not so in (R, d).

m  Everysingleton set {x}, x € R is openin (R, d") being an open sphere S, (x), r <1, ie., bounded
open interval Jx — r, x + r{ for r < 1 contains only one point of the set, x of the space. But {x} is not
open in (R, d). Because every open sphere §, (x), r <1, is the bounded open interval Jx — r, x + A
@ {x}.

Example 14. Show that the subset A = [0, 1[ of the metric space (X, d), where X = [0, 2[, and d is the
usual metric, is an open set.

» Letxed=[0 I

Ifx =0, then S,,(0) =0, 3l < 4. If x #0, choose »=min {x, | - x}. Clearly r > 0 and
S,(x)=lx-r,x+r[c[0,I[ = A
Hence, 4 is open in X.

Definition. Two metrics d and 4’ on the same set X are said to be equivalent, if every set open in
(X.d) is open in (X, &), and vice versa.

Example 15, Let (X, d) be any metric space and let

d(x, y)

d(x. y) = 1+d(x,y)’

Vx.veX
b
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Show that @ and & are equivalent.
@ x l:: zlnl:ady shown that ¢’ is a metric on .Y (Example 5).
open subset of (X, ). Then for each x € G. 3 an open sphere,
S,(x)={reX:d(y.x)<ricC

I.arl=

, then r, < r.
1+r

Now,
veX:d'(y.x)<njclyve X:d(y, x)<r}
dy,x)<n= _‘i(L_r)— O
l+d(y.x) L1+7r
(X,d") contained in G.

Thus every point of G is the centre of some open sphere 1n
let G be any open setin (X, d") {

Consequently, every set open in (X, d) is open in (X, d'). Again,
so. 3 an open sphere
S (x)={reX: d(y,x)<rtcG

Since d'(x, v) < |, we may assume 7 < €1

Let ' = ;
-r

e of an open sphere contained in G implying that G is open in (X, d).

Now each point of G is the centr
min {1, d(x, y)} for all x, ye X. Then show that

Ex. Let (X, d) be a metric space, and let d'(x, ) =

d and d'are equivalent.
In any metric space (X, d),

Theorem 1.
@ (i) the union of an arbitrary family of open sels is open,
(ii) the intersection of a finite number of open sels is open.
X, where A is any non-empty index

(i) Let {G,: X € A} be an arbitrary family of open sets in
set.

Let G= v G,.
ael

If G=
therefore there is an ; € A such that x€ Gao-

¢ then G is open. Suppose G # 9. Let x be any element of G. Since G = U Gy
ael

The set G,, being open implies that there exists » > 0, such that
SAx) G Gy
and so
08,0, 0 (- Gy 0, G)

Hence, G is an open set.

) .



(i) Let Gy. Gy, ..., G, be any finjte Number -
of open sets in y
s and

|

=] I

Suppose G » 0.

. If G = ¢, then G is open.

LetxeG=r"‘\G,.,then X€G,

l i=1

Since each G;,i=1,2

Vi:LZ,...n

-+ M, 1S Open 3 r

>0, such that

Yi= 1,
Let r = min {r, P25 ey P o
Then r > 0 and
S,(Jr)c_;S,,i(Jc)QGi Vi=12
This implies o

Sr(x) o= Dl Gi =G
Hence, G is open in X,

v l isan
aeA

Lemma. Let F be the family of open intervals in R, no two of which are disjoint, then
open interval.

Let I;= U I, and let a, b € I, anda<c<b.
IeF

‘o



Then a € /,and b € /,, for some /,,/, € F.
Let 1!= }al. b|[and ]2 = ]az. bz[. then

a <a<c<b<bh

A1)

If b, < a,, then I, N 1, = ¢, which is impossible, so &, > . Then either ¢ <&, or ¢ 2 b;. In the
former case ¢ € /,, and in the later c € /, (" a, < b;) and consequently in either case ¢ € Io. Thus J;
is an interval. The interval /, must be an open interval because it is an open set (being union of open
intervals).

Theorem 2. Every non-empty open set on the real line is the union of @ countab
pairwise disjoint open intervals.

le collection of

x € G, let I, bethe union of all the open intervals
s exist because G is open). By the above Lemma,
| which contains x and is contained

Let G be a non-empty open subset of R. For each
which contain x, and are contained in G (such interva
each /_ isan open interval. Obviously /, contains every open interva
in G. Moreover

G= v d;

xeG

We shall show that any two members in the above union are either disjoint or identical. For this let

x, v € G. and suppose that
I.nl, #9¢

Then, by the above lemma, the set I, w1, isanopen interval which contains bothx and y. Therefore

by definition of /, and /, it follows that
1,vl, c I, and Lol el;

Consequently /, =1,.
Let F be the collection of all distinct sets of the form 7, with x € G. This being a disjoint collection
of open intervals whose union is in G.
Now it remains to show that F is countable. The set Q N G of all rational numbers in G is countable.
We define a function f from Q N G into F as follows:
inen re Q N G, .let f (r) be the unique set 7, in F that contains r (the set 7, is unique because the
sets in F are pairwise disjoint). "
fis obviously onto, since each open interval in R contains a rational number. Hence F is countable.

2.4 LimitPoints

Definition. Let A be any subset of a metric space (X, ). A point ‘a’
: , d). A point i :
A, if every open sphere centered at ‘@’ contains a point of A_p =61 s S 2 oo Bt ok

Adherent points are of two types:
(7) isolated points,
(if) limit points.

————

e ——



An adherent point ‘a’ of a subset 4 of X is called an isolated
+g" contains no point of A other than a itself,

point if every open sphere centered at

An adherent point ‘a’ of a subset A of X is said to be a limit point of A if every open sphere centered
at ‘a’ contains at least one member of 4 other than q

i€ San(4-{a))#e, Yr>0

The essential idea here is that points of A different from ‘a" get arbitrarily close to a or ‘pile up’ at a.

The limit point is also known as a cluster point, a condensation point or an accumulation point. If
‘a" is a limit point of A then every open sphere centered at a contains infinitely many elements of A, and
conversely. The limit point of 4 may or may not be a member of 4.

Derived Set. The set of all limit points of 4 is called the derived set of A and is denoted by A’
ILLUSTRATIONS

I. Let R be the set of reals with the usual metric 4. Let 4 = [0, I[. Every point of 4 is a limit point

of A. Further ‘1’ is also a limit point of 4 which is not a member of 4. Here A’ = [0, 1]

Let 4= {1, ,1...} with the usual metric in R. ‘0’ is the only limit point of 4 which is not a
member of 4, so that 4’ = {0}.

The derived set of every subset of a discrete space is empty.
Every real number is a limit point of the set of rationals.
The set of integers has no limit point.

A finite set has no limit point.

Now e W

Let A be the annulus consisting of complex numbers z such that 1 < | z | < 2, with the usual
metric, then 4" ={z:1<|z|<2}.

25 Closed Sets

Definition. A subset F of a metric space (X, d) is said to be closed if F contains all its limit points.
ILLUSTRATIONS

The empty set ¢ and the whole space X are closed sets in every metric space (X, d).
On the real line with the usual metric the set N of natural numbers is closed.

The set Q of rational numbers is not closed.

Every closed interval on the real line is a closed set.

Every finite subset of a metric space is closed.

R

Let 4= {f € C[a,b]: f(a) = 1}. Then 4 is closed with respect to the sup metric in C [a, b).

7. The set {li ‘ne N} is neither open nor closed with respect to the usual metric in the
n

complex plane.

Theorem 3. Let (X, d) be any metric space. A subset F of X is closed if and only if its complement in

ﬁi; open.
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Suppose F is closed. If F* = X — F = ¢, then it is open.

Assume that X — F # ¢. Let x € X - F; then x ¢ F. Fbeing closed implies x is not a limit point
of F and so there exists » > 0, such that
S,(x)NF=¢
b€y xeS.(x)g X~-F
Hence F° is open.

Conversely, suppose that X — F is open. If x € X — F, then there exists r > 0, such that

Sr (x) = X - -F
€. S.(x) N F = ¢ = x cannot be a limit point of F. e Z
Since x € X — F is arbitrary, therefore F' does not have any limit point outside 1t. onsequently
is closed.

crete space is closed. Since ina

i subset of a dis :
From the above theorem we can easily see that every en X — F being a subset

discrete space (X, d) every subset of it is open so if F is an arbitrary subset of X, th
of X is open and therefore F is closed.

Example 16. Every closed sphere is a closed set. .
s Let S [x] be any closed sphere in a metric space (X, d). If X — S,[x]= ¢, then ¢ is open.
Assume X — S, [x]# ¢. Let ¥ € X - 8,[x]. Then y € S.[x)

This implies d(y, x) > . Let p=d(y, x)—r.

The open sphere S,y < X -8,[x]) forif z€ Sr,(»), then d(z, y) <, and so

d(z,)’)<d(.}’ax)—r ' .
r<dy x)-dz y)=dx 2) (by triangle inequality)

Thus z € S, (¥) < X -S,[x]
This implies X — S,[x] is open. Hence S,[x] 1s closed.

ie.,

Theorem 4. Inany metric space (X, d),
(i) the intersection of an arbitrary family of closed sets is closed,

(ii) the union of a finite number of closed sets is closed.
(Proofs follow from Theorems 6 and 7 of Chapter 2.)

[For alternative proof. Hint : (i) Let {F,: @ € A} be any family of closed sets, then nA F, is
ae

closed, w X - N Fy= U (X~ F,), A is any index set.]
aeA ael




,6 Subspaces |

o 2. Let (X, d)bea metric space. Lot ¥ be w non-empty subset vf X Flin G 1aaVGabon ey
Deﬁn:t'ze lmetric dto Y x Y is ametnic for Y culled the induced matyic wd S s spis 7. 4,)
dy ©

called 2 subspace of (X, d). ‘ |
The closed unit interval [0, 1] and the set of sl rations) pumbers ae subspices of s e wa

. cle. the closed unit disc and the open unit disc are subspiaces of the spuce (£ d) A saapisr PETPITy L pooves
;::?ac} the real line itself is a subspace of the space complex nupibhess.
If Y < X, (X, d) is ametric space, and y € Y, then we shall denote the opon sPlers sarumd & 5
with radius 7 in (Y, dy) by S ().
ies ST(y) = {xeY:idy(x, y)<r}
It is easy to verify that
STy =S,(»nY.
From this it follows that a subset of Y which is open in X is also open in 7. owever, fue sonsenss
may not be true as can be seen by the following examples.
1. Take Y =10, 1], X= R, d the usual metric, then S;[UJ =10, %[ is open in 7, but net au K. Berie
that Y is not open in R.
2. An open interval of the real line is not an open subset of the complex plane.
The following theorem gives a criterion for a subset to be open in a subspace.

Theorem 5. Let (X, d) be a metric space and Y < X, then a subset A of Y is open in (¥, d,) i and
only if there exists a set G open in (X, d) such that

A=GnNY.
Assume that 4 is open in (Y, dy). Then for each a € 4 there exists r, > 0 such that
S, (a)c 4
so that
A= 8 (a)
ae A
But since
S (@)= 8, @)Y
A= uA(S,a(a)r\Y)=GmY,
dae
where

G= UA S,,(a) 1s open in (X, d).

Conversely, suppose that there is a set G which is open in (X, d) with G A ¥ = 4.
Let a € A4, then g € G, and so there exists r > 0, such that

S,(a)c G
This implies

P~ S/(@)=5(aNYcGAY=4
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ie.,
S5/(a) < 4
Hence, 4 is openin (Y, d,).

openFim$ the above theorem, it follows that an open subset of Y is open in X if and only if ¥ itself g
n X

A similar criterion for closed sets is the following:
Theorem 6. Ler(x d) be a metric space and Y X, then a subset A of Y is closed in (¥, dy) ifand
only if there exists q set closed in (X, d) such that
A=FnNY.

(Proof follows from the above theorem by taking complements.)
2.7 Closure of a Set

Definition. Let 4 be any subset of a metric space (X, d). The closure of A denoted by A is the set of
all adherent points of 4.
i .y Z =AU A

A={xe X:S.(x)n A#¢, forall r>0}.

Symbolically

Properties:
Let 4 and B be any two subsets of a metric space (X, d). Then

(1) A is a closed set.

(2) If A< B, then 4 c B.

(3) A is the smallest closed superset of 4.

(4) A= A ifand only if 4 is closed.

(5) A is the intersection of all closed sets containing 4.

(6) AUB=4UB
(7) AnBcANnB
(1) In order to show that 4 is a closed set we shall show that its complement (4)° is open.
If (A)° = ¢ then ¢ is open. Assume that (A4)° # 0.
Let.x € ( A ')c, then x ¢ 4 = there exists at least one r > 0 such that
S,(x)n 4=

Now to show §,(x) N 4 = ¢, wetakea y e S, (x), then dly, x)<r.
Let n =r -d(y, x).

Clearly , > 0 and Sr(y) < S (x)

i Sr(¥) N 4 =9, for at least one r [ Sr(¥)NAc S, (x) N A]
= yed

Since y is an arbitrary member of S, (x), therefore



(2)

€)

4)

(3)

(6)

$,(x) € (4)°. This implies (7 ) |

= 18 0
Hmce A 1S 0pen pen
Let X € Z then
Sr (X) N A # f
This implies ¢, forall >
; S,(I) NBz ¢' ( y, c B)
ie., e
Hence, 4 c B.

» W€ assume that if f

. is any other closed set containing 4, then
[+ F is closed]

; Since F is arbj 1
containing A. trary, so A is the smallest closed set

If A= A, then by (1) A is closed, and so A is closed.
Conversely, let 4 be any closed set.

Since 4 € 4, 50 we need to show that 4 c 4.

Let x be any element of 4, then either x ¢ 4 or x¢ A.
If x € 4, then the result is proved.

If x& A, and x € 4, then for every r > 0, the open sphere S, (x) contains a point of 4 other
than x.

=  x is a limit point of 4.

But 4 being closed, therefore x must belong to 4. Hence 4 C A.

Let F be the intersection of all closed sets containing 4. Then F is closed.
AcF=>AcF=F

ie., ZQE

Thus every closed set which contains 4, contains A.But 4 isa closEd set containi_lzg A.F,
being the intersection of all closed sets containing 4, is contained in 4. Therefore 4 = F.

We know that

Ac AuUB, and BC AUB
AcAUB and BCAUB
;&.ndso AUBCAUB
Now to show that .
AUBcCc AUB

We proceed as follows:

e —_—

Let, if possible x € 4 B, but x¢ 4 U B. The x is neither an adherent point of 4 nor that
et, - . :

of B, Consequently, there exist open spheres S, (x), and Sr,(x) containing no point of 4 and
R respactively.



Take r = min {r,, 1y}, then

S, (x) contains no point of 4 as well as no point of B, and therefore of 4 U B,
2\ X is not an adherent point of 4 U B.

le, x¢ m

Thus we arrive at a contradiction.

Hence yve AUB=xe 4 U B.
(7) Since ANBC A4, and ANBCB

ANBgc 4, and AN Bc B. Hence ANBCc ANB.
The result can be extended to the intersection of an arbitrary family {4,} of subsets of X,

le.,

to verify that A" = AN Y.

2.8 Interior, Exterior, Frontier and Boundary Points

Definition. Let A be any subset of a metric space (X, d). A point ‘a” in 4 is an interior point of A if
there exists » > 0, such that

aeS, (a)c A
Interior of a Set. The set of all interior points of A4 is called the interior of A, and we write

int A= {xe A:5,(x)c A, for somer>0}
clearly int A is an open subset of 4.

A point x € X is said to be an exterior point of A, if it is an interior point of the complement of 4.
i.e.. if there exists an open sphere S, (x) such that
S(x)g A, or S, (x)N A=¢.

Exterior of a Set. The set of all exterior points of 4, denoted by ext A4, is called the exterior of A.
By definition

ext A=int A°
ext A is open and is the largest open set contained in A°.
Also a point is an exterior point of 4 if and only if it is not an adherent point of 4.
ext A= (A)
Moreover, int A = ext A< = (A)°, and int 4° = (A)".
For example, if X = R, and 4 = [0, 1[, then
int 4 =10, 1]
ext A=]-o00 0 U]l oo[.




I 5 i Sl B a3 B

Notethﬂmepoinu'O'md'l‘mmmpomumrnmmuofA Smhprﬂﬂl”f‘
are called Frontier points of A.

In another example, let A be the set of complex numbers x + fy, such that y = -
Then A’ = A and there are no interior points.

A point x € X is said to be a frontier pointof A ¢ X tfnilmmmmmexwm
of A. If the frontier point belongs to A it is then called a boundary point of A.
Frontier and Boundary of a Set. The set of all frontier points and boundary pomts are denoted try
F.(A). and bd (A), respectively. Clearly

bd(A) g F,(A)

In the above example F.(A) = {0, 1}, and bd(A) = [0}. Note that the interior points, exterior pomts
and frontier points of any subset A of X fill up the whole space X.
X=mtAuext AU F,(A)

Now since int 4 and ext A both are open in X, therefore F,(A) 1s a closed set.

1.and 0525

Le.,

ILLUSTRATIONS
1. X=R. and d the usual metric, A= Q, thenint A = ¢, ext A=0. F.(4) = R, and bd( A) = @
2. X=R, and d is the usual metric, 4 = ]I, 2] U J3, 4[, then
intA=A, ext A=]-se 1[U]2 3[U]4. =[
F.(A)=1{1,2, 3,4}, and bd (4) = {2].
3. If (X, d) is a discrete metric space, and 4 ¢ X, then
intA=A.ext A= A", F,(A) =bd(A) = ¢.
4. If X=N, and A be a finite subset of it, say 4 = {1, 2, 3}, then
int A=¢,. ext A=¢
F.(A) =N, and bd(A) = A.

Properties:
LﬁAaﬂBbemyMomMOfammicspacu(Xd).thm

(i) int A is the largest open set contained in A.
ie., A= {G:G isopen,and G C 4}
(if) A is open if and only if A = int A.
(iify A B impliesint A < int B
(iv) int (A~ B) = (int A) " int B.
(v) imt(AwB)yoint AU int B.
1 Y
. m:fm‘ﬁ) and (ii) follow from theorems | and 2, chapter 2 (change open interval to open sphere
(iii) Let x € int A. Then there exists r > 0 such that

kit
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Note that the points ‘0" and ‘1’
iy . o .
L roaited el oy re neither interior points nor exterior points of A. Such points of A
In another example, let 4 b
G e the set of com
0 plex numbers x + iy =
Then A' = A and there are no interior points o bt 0 L

A point x € X issaidt
XE . o be a fronti ; e
frontier point of 4 X if it is neither an interior nor an exterior point

£A.1f ier poi .
of A. If the frontier point belongs to A it is then called a boundary point of A
oundary points are denoted by

Frontier and Boundary of a Set
\ . The set of all frontier poi
F.(A), and bd (4), respectively. Clearly P 2
bd(A) c F,(A).

In the above exam -
ple F,(A) = {0, 1}, and bd(4) = {0}. Note that the interior points, exterior points

and frontier points of any subset A of X fill up the whole space X.

ie., i
X=int Auext AU F.(A)

Now since int 4 and ext 4 both are open in X, therefore F,(A) 153 closed set.

ILLUSTRATIONS
. X=R, and d the usual metric, 4 = Q, the

2. X =R, and d is the usual metric, 4 = JI,2] U 3, 4[, then
intA=A,ext A=]—o1[V ]2, 3[U]4, [

nint A=¢, ext A=9, F.(A) =R, and bd(A) = 9.

F.(A) = {1.2,3,4}, and bd (4) = {2}.

3. If(X,d)isa discrete metric space, and A c X, then
intA=A,ext A= A, F.(A) = bd(A) = 9.

4 IfxX=N,and 4 be a finite subset of it, say 4 = {1, 2,3}, then
int A=9, ext A=¢

F.(4) = N, and bd(4) = 4.

Properties:
a metric spaces (X, d), then

Let A and B be any two o
(i) int A s the largest open set contained in A.

ie, A=Y (G: G is open and G < A}

A is open if and only if A=int A
gint A< int B
(int A) M int B.

int B.
heorems | and 2, chapter 2 (change open interval to open sphere

subsets of

(if)
(i) A< B implie
(iv) int (4O B)=

AuB):imAU

(v) int (
from t

proof of (/) and (i) follow

in the proof).
(iif) Let X €

int A. Then there exists 7~ 0 such that



S, (x)c 4

Therefore
S, (x)c B (= Ad¢c B)
This implies x € int B.
Hence int 4 C int B.
(iv) By definition
int AC A, and int B B
- int A N int B, being the intersection of two open sets, is open. Therefore
int ANint Bcint (4N B) (by (ii))
Also AnBc A= int (AN B)cint 4, and int (AN B)Cint B
~ int(AN B)cint A Nint B.
(v AcAUB=int Acint(4U B)
and Bc AuB=int Bcint (AU B)

. int Auint B int (AU B).
Note that equality may not hold in (v) as can be seen by the following example:
Let A =12, 5[, and B = [5, 7[ be the subsets of the metric space (R, d) with the usual metric d, then

mtAd=1]2,5,intB=1]5,7[
int Auint B=12, 7] - {5}
Butint (AU B)=]2,7[
. int (AU B)#int AU int B
Theorem 7. Let (X, d) be a metric space, and A, B be any two subsets of X, then
(i) ext A is the largest open set contained in A°
(ii) A° is open if and only if A = ext A
(iiiy A c B implies ext B C ext A
(iv) extx (AN B)Dext Auext B
(v) ext(AuB)=ext Anext B
Proof follows from the above theorem by taking complements.
Theorem 8. Let (X, d) be a metric space, and A, B are subset of X, then
(D) FrlA)=An(A)°=A—-int 4 e
(il) Fr(A) = ¢ ifand only if A is both open and closed
(iii) A is closed if and only if A 5 Fr(A)
(iv) A is open if and only if A° 2 Fr(A)
(V) Fr(A 0 B) C Fr(4) U Fr(B). The equality holds if 1 ~ B = Py
(Vi) Fr(int A) < Fr(A).



(1)

(i)

(iii)

(iv)

(v)

Fr(A) = (int A Uext 4)° = (int A°) N (ext A)" = AN A
ie, Fr(A)=A4AN A°=4 - (A =A-int A
Let Fr(A)=¢, then by (i)

A-intA=¢ ie, Agint A
= AcAcint Ac A
Hence, A is both open and closed.
Conversely, let 4 be both open and closed then

Fr{A)=A-intA=A-A=9¢.

Let A be closed, then
i) [y ()
An(A°)c A

Fr(A)

Conversely, let Fr A ¢ A.
If possible, let A be not closed, then there exists an element x belonging to /. but not belonging
toAd, ie, xe A—A
But
A-A=AN A c AN (A°)=Fr(4) [by (1]

o x € Fr(A)
So that x € A, which is a contradiction.
Hence., A must be closed.

A is open if and only if A° is closed, and A€ is closed if and only if

A€ 2 Fr(A°)
But since
Fr(A°) = (A°) N (A5) [by (D]
=A° N A =Fr(A)

Hence, 4 is open if and only if A€ 2 Fr(A).

Fr(An B)=(An B)n (4N B) [by (D]
cAnEB N4 UE)
—AANBnN(A° U B°)
—(AABNA)U(AnBnB)
= (Fr(A) n B) U (Fr(B) N A)
c (Fr(A) v Fr(B)

(vi) Fr(Au B)= Fr(AuU B) = Fr(A° 0 B°) g Fr(A°) LU Fr(B")

= Fr(A) v Fr(B)



2.9 Dense Sets

Definition. A subset A of a metric space (X, d) is said to be dense (or everywhere dense) in X, i the
closureof 4is X, ie, 4 = X.

For example the set of rationals is dense in R with the usual metric. Every interval i d“"e-in-iuqf

A set A is said to be nowhere dense in X, if the complement of the closure of 4 is denge iny
Le., (A =X, or et A=X

Equivalently, 4 is nowhere dense in X iff int (A4) = @, since

int A =ext(A4), and ext X = ¢

Clearly every finite subset of X is nowhere dense.

A set is said to be somewhere dense in X, if it is not nowhere dense in X,

It is clear that 4 is somewhere dense in X if and only if 4 contains a non-empty open sphere.

Also since 4 is closed, 4 is nowhere dense in X if and only if 4 is nowhere dense in X. C]
subset of a nowhere dense set, is nowhere dense.

A set “A’ is said to be dense-in-itself if every point of A is a limit point of A.

Le., Ac A
A set "4’ is said to be perfect if it is closed and dense-in-itself,
Le., A= 4

Every closed interval, the empty set, ¢, and the whole space X are perfect sets.
Example 17. The cantor set is a perfect set.
Recall that the cantor set is the set obtained from the closed interval [0, 1] by removing the sequence
, 1 2] 71 2 7 8 . . _ 1102
of open intervals ]5 5{ : J_‘)_ 5[ U JE 5[ which are middle thirds of [0, 1] ; [0, 5]; [3 l}

respectively. Thus the cantor set is the intersection of the family of sets {F,: n € N}, where
F,=[0.1]

F, = O.J—]urz,l
. 3

- 1 .-2 1 2 7 8
F=l0-lul==|uls L b-;
A | 9] 9 3] [3 9]"’[9"]‘ .

("~ Each F is the complement of the union of removed open intervals and the intervals ]— oo, 0[
and |1, «{), and so the cantor set

are closed sets.

F=-
n?IF:'

15 closed.
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All that remains is to show that it is dense-in-itself.

) « a
For this let x € F. then x = EI ;—:'- where each a, is either 0 or 2 be the ternary expansion of x

(expansion in the scale of 3). We shall show that x is a limit point of F.
Choose the sequence {x,} in F, such that

am '
h=-a aqa..a,..

- . '
FJ = alal a‘...a..‘.

- '
:\',. ®-qa,...a, a,,,...

where a,'=0. ifa, =2, and a,"=2, if a, = 0.

The sequence {x,} of distinct points of F differ from x at the nth place in the ternary expansion.

Therefore lim x, = x

n—sos

Thus every point of the cantor set is a limit point of the set and so it is dense-in-itself.
Ex. Prove that the cantor set is nowhere dense.
Definition. A metric space X is said to be separable if there is a countable subset of X, which is dense
in X.

Since the set of all rational numbers is countable, and dense in R, therefore the metric space R s
separable. Let (X, d) be a discrete metric space where X is any uncountable set, then (X, d) 1s not

separable (- the only dense subset of (X, @) is X itself). Hence the discrete metric space is separable if
and only if it is countable. )

Ex. 1. A subset 4 of (X, d) is dense in X if and only if 4 has non-empty intersection with each nom-
empty open sphere in X, or equivalently if and only if 4 has non-empty intersection with each non-empty
open subset of X.

[Hint: Given S,(x) N A # ¢, forallr>0, and for each x € X, and by definition

A={xe X:S5.(x)n A#¢, forallr>0}.

hence A = X.]
Ex. 2. Show that the Euclidean space R" is separable.
Ex. 3. Prove that the metric space /. of all bounded sequences with sup metric is not separable.

(Hint: Show that every dense subset is uncountable. ]

EXERCISE

1. Let x, and x, be distinct points in the metric space (X, ). Show that there exist two disjont open spheres centered
at x, and x,, respectively.
2. Show by example that a set which fails to be closed need not be open.




a metric space (X, d) can be both open and closeq,

t A of : .
-empty Pmpﬂf!:::!i:pen sphere of radius 7 centered at x, is not necessarily equa ¢, the
losure 0
Prove that we alw

S;,(x‘]) c Sr[xD]
hat |a, |$ 1, |b, |S 1, V n. Then prove that

3. Show by example that a non

4. Give an example to show that the ¢

ays have
closed sphere or radius 7 centered at Xo.

5. Let {[a,, b,]} be asequence of closed intervals such t
{{x,}: X, ela,, b,]}

is a closed subset of H_. s
6. If A and B are disjoint closed subsets of a metric space X, show thal s
G={xeX:d(x,A)<d(x,B)},andH={xeX:d(x,B)< (x,

isjoi ini ively.
are disjoint open sets containing 4 and B respective . o
7. Determine whether the following subsets of the metric spaces indicated are open, closed, both open and closed, or

neither open nor closed | |
() {(x;, %....x,)€R" :x, >0 fori=12...n} anddis the Euclidean metric.

(i) {(x;, xp..., x,) € R" : x; is rational for i =1, 2... n}
(ii) {{x,} €l:x, <1/n,forn=1,2...}, where / is the set of all sequences {x,} such that El Ix, | is

convergent with the metric defined by
d({xn}s {yn}) = 2;4] Ixn =~ Vn I .
() {f €C'[a,b]: f(a) + f'(a) = 0}, where C'[a, b] is the set of all functions defined on [a, b] having

continuous first order derivative on [a, b], with the metric defined by
d(f,g) =sup { f(x) - g(x)|: x €[a, b]}

+sup {| f'(x) - g'(x) |: x €[a, b]}.
8. Give an example of a countable family of closed subsets of R whose union is not closed.
9. Prove that an open subset of R” can be expressed as the union of a countable family of open spheres in R”.
10. Show that if n > 2, then there are open subsets of R” which cannot be expressed as the union of a countable
family of pairwise disjoint open spheres in R” .
11. Show that a metric space is discrete if and only if every point of the space is isolated.
12. Find the closures, the interiors, and the frontiers of the following:
() asubset 4 of a discrete metric space X,
(éf) the set of all rational numbers in R,
(i) an open sphere in the Euclidean space R".

1. Prove that the cantor set of example 17 has neither isolated poj i
ated points : X
14. Let A be the subset points nor interior points.

LA R
== .n=l,2,...;m=0.il,:l:2,...}

of the Euclidean space R?, Prove that 7 is the union of A and the get {(x,0): x e R}
15. Find the Frontier of the subset {x,, %2): Xy = 0} of the Euclidean space R2 |

16. Prove that a set D is dense in a metric space (x, d) if and only if x;
. ' » Y if X'is the on] closed ini
17. Verify that (R - Q, d), the irrationals with the usual metric, is a Separable m:lri: spncs: eonnne




i separable

20. Prove that the example of a Hjjpe
21. Prove that a closed set in a

22. Prove that 4 = {fiine N} is a nowh

ere dense subset of C .
2 [0, 1] w.r.t. sup metric,
xS 1/" »and f(x) =0, otherwise, - P

where f,(x)=n - n’x, if

*3. CONVERGENCE AND COMPLETENESS

Definition. Let (X i
i{u ‘@ of X ifg - 11): o o e space. The sequence {g,} of points of X is said to comverge o a
po » 1LIoreach & > 0 there exists a Positive integer m, such that
h | d(a,, a)<e, Ynom
ie., d(a,,a) >0, asn— oo

or equivalently, for each open sphere S, (a) centered at ¢

- a’ there exist as positive integer m such that a,
1s1n S (a), forall n>m

The point ‘a’ is called the limit of the sequence {qg, }, and we write a, — a,as n — oo

. lim a, = a.
n—yee

Cauchy sequence. 4 sequence {a,} of points of (X, d) is said to be a Cauchy sequence if for each € > 0
there exists a positive integer »,, such that

d(x,, x,) <€ VYnm2n,

ie., d(x,,x,) >0, as n,m— oo

Theorem 9. Every convergent sequence is a Cauchy sequence.

Let (X, d) be any metric space. Let the sequence {a,} of points in X converge to a.
For every given € > 0 there exists a positive integer n, such that
- d(a,,a)<€/2, Y n2n,

Then for m, n > n, we have
d(a,,a,)<d(a, a)+da, a,)<€2+¢€f2=¢

| This implies {a,} is a Cauchy sequence.

le 18. Consider the space X = 10, 1] of the real line with the usual metric. The sequencs
Exa}mp ;/ }. s a Cauchy sequence converges to ‘0, which is not a point of the space.
= n

{a

E le19. Let Q be the set of rational numbers in which the metric d is defined by
xample 19.




dR

d(x,y)=|x—-y|, Vx,yEQ |
Cauchy sequence which converges to the limit

o : ' t converge to a poj
But the sequence {(1+ 1/n)"} is also a Cauchy sequence in it, which does no g point of

i is said to be co
Complete metric space. A metric space (X, d) is said

i t OfIY- = 11 1 Ny
conv;gz;i; I:: Ee examples mentioned above are not complete. But if we adjoin the point 0’ ¢, the
€

space ]0, 1] in the first example it becomes complete.

(Q, d) is a metric space. The sequence {1/3"} isa
mplete if every Cauchy Sequence

ILLUSTRATIONS .
1. The discrete space (X, d) is a complete metric space. For in tt}ls space a Cauchy sequence
must be a constant sequence (i.e., it must consist of a single point repeated from some Place

on) and so converges. I .
2. The space (R, d) is a complete metric space. The convergence in R is the ordinary convergence

of numerical sequences.
3. The space R" of all ordered n-tuples with the metric d,

1)
= 2
d(x, y) = ( : (x; = ») J
=
is a complete metric space. The convergence in this space is coordinate wise. This space

(R", d) is called n-dimensional Euclidean space.

Example 20. The space C [0, 1] of all bounded continuous real-valued functions defined on the closed
interval [0, 1] with the metric 4 given by

d(f, g) = Dax | f(x) - g(x) |
is a complete metric space.

= Let {f} bea Cauchy sequence in C [0, 1].
Let £ > 0 be given. Then there exists a positive integer n,, such that

d(fy. [n) <€, VYnm> n,

i_e.’ nga_({(] |f;?(X)‘—fm(x)j<£, Vn,m2n0
ie., ]f,,(x)-f,,,(x)l<£, Vn.mzno and Vxelo 1]

Example 21. Let /_ be the set of all bounded numeric,
defined by




A5 I)=3up |3, v, |V 4 e

= (L o

*» = 18;"}. Since X, €l,503IM>0
() - :
4™ 1S M, fori=1,5 3.

Therefore for € > 0, there exists an integer n, such that
0

d(x,, X,) <€ VY n,m2n,

. (n)
ie., sup |, = a(™ <&, Ynm> n,
')

(m) _ _(m)
= 16 - g™ | <, Vn,m2n,, and foralli=1,2,3.. (1)

Let i be fixed. Then (1) implies that the sequence {al" a?,...a™,...} is Cauchy and so converges

to a;, by Cauchy’s General Principle of convergence. Taking limit in (1) as m — e, we have

16" —a,|Se, Vnzn,

and this is true forall i=1, 2, 3,...

Hence, - la; |<|a™ —a,|+|a™ |<e+ M, Vi

This 'implies {a;} is bounded. Let x = {a,}. Then x € /.. Hence (/=, d) is a complete space.

% Example 22. Let /, be the set of all real numerical sequences for which

i | x; [P < eo.

—_

We define the metric din /, by

” Ip
d(x,y)=(_§1|x,._y,. |P] Vr=ihy=biel,

The space (/,. d) is a complete metric space, and is known as Hilbert sequence space.

Consider a Cauchy sequence {x,} = {{x{"}}in /,.
Therefore for a given € > 0 there exists an integer ny, such that

= Vp
d(xnsym)__-[_z'llxl(w-xf(”l) PPJ <E, Vn,m?.no (1)
i= aen

Hence | x" — x(™ | <&, ¥ n,m2ny, and for all ie N (2)

Fixing i, we see that the sequence {x{” x*,...x{",...} converges to a limit x,

ie., lim x" = x;

n—3¥oe




— e

Let x = {x;}. Thenthe inequality (1) implies
é | x® - ™ P < g?, for every k, and
i
i=1

Taking limit as m — %, W€ have

p n2n
£ - x; P <€f, for 0

>

n

i=1

Letting k — oo, we get
3 |x® —x, [P S &, for n2n
j=1

This implies x, — x € /,, andso X =X, = (

is complete.
@ Example 23. LetX

de )= [ 150 -y 1t xyeX

Show that (X, d) is not complete.
m Let {x,} beasequence in X defined by

n, 1f0StS—12—
N

For n > m, we have

At 3) = [ 12,0) = 5,0) |

=I:"2In—mldt+J.:’;2I71;__,,,ld,+J;m2

(n—m) I/m2
=T+ - m)

for in.m 2

be the set of all continuous real-valued functions defined on [

x, —x) €l Also d(x,, x) > 0 as n — o, Hence L

0, 1], and let




Hence {xu} lSaCauchy sequence inx TRsEITRT - :

Now we shall show that thig C
hy sequence
does

d(x,, x) = J‘;h

not converge in . Forevery xe X
() = x(1) | dy

_ Un2
‘L. ""-“(l)ldur

x(f) = {-“"’- if0<r<]
‘hich is di i -
nl'uceml; {Lsc;mous at 7 = 0. Hence d(x,, x) does not tend to zero Sronih xc.X. Kn, 0
sequ " not converge to the point of the space. This implies that (X, d) is not complete.
’ Femma. - Let (X, d) be any metric space and A be any non-empty subset of X, then x € A if and only
if there exists a sequence {x,} in A such that X, = X, as n— oo,

Let x € A then every open sphere centered at x intersects A. In particular S,,,(x) N 4 # ¢, for all
n. So we get a sequence {x,} in A such that
d(x,, x) < l Vn
n

lim x, = x.
n—ee

Again, let {x,} be a sequence in A which converges to x. To show that x € 4 we must show that
every open sphere centered at x intersects 4.

Let S,(x) be any open sphere. Then for » > 0, lim x, = x implies that there exists a positive

integer ny, such that
d(x,,x)<r, Yn2n,

In particular
d(x,,o, x)<r
= Xpo € S, (x)
= S (x)NA#9 I X, € A]
= xeAd

Theorem 10. Let (X, d) be a complete metric space and Y be a subspace of X. Then Y is complete if
and only if it is closed in (X, d).




e

Let Y be a comp 3

By definition Yc Y, sowesha

‘ Let x be an element of .1 x €

definition of limit point, eVery nelgl;; e ‘
h n we get a sequence iy, :

Thus for eac d(y,, x) < ln. Thus y, =y, as n = co,

bspace of X. In order to show that Y is closed we neeq tq show that e

te subsp : o 5

- 1 show that ¥ < Y. 3 | .
¥, the result is proved. If x ¢ Y, then x is a [imj; -

. ) illt of Y B
ourhood Sy/,(x) contains at least one member of Y other y, . Y

the sequence {y,} being a convergent sequence must be a Cauchy S€quence, §
€ n ) . .
;Z:: this Cauchy sequence {y,} mustconverge in Y,hence x € Y. Butxis anarbltraryp
com| ’
therefore ¥ < Y. ' |
erecoﬂvelsely we assume that ¥ is a closed subspace of X, and establish that ¥ is complete.

ince y is
oint of ¥

———

Let {y,} bea Cauchy sequence in Y, ‘and since X is given to be a complete Space, therefore 0.}
must converge to a point y in X. Butthen y, €Y, foralln,and y, = y, as n =

- yeY=Y (- Yisclosed)
The following is a generalisation of Nested-Interval Theorem (Example 17, Chapter 3).

-

Theorem 11. ~ Cantor’s Intersection Theorem. Let (X, d) be a complete metric Space, and

let {F)
; n
be a decreasing sequence of non-empty closed subsets of X such that d( F)—=0, as n—

oo, Then

f
F=n F, contains exactly one point. |
n=1

Since F, # ¢, for each n € N, we can choose a sequence of

=1,2,3... We shall show that {x,} is a Cauchy sequence in X.
Now {F,}

points {x,} such that x, € F,, for

is a decreasing sequence, ie., F,,, F,, for all n, therefore Xns Xp41s -o. all liein F,. |
Moreover d(F))—>0, as n - oo,

. Therefore given £ > 0 there exists a positive integer n,, such
at

d(F,)<e, Vn2p,

Xn, s Xn,

=

a2 Xn s allliein By
Thus for positive integers m, p > My, we have

' X. Since (X, g) i complete, 3 a point x € X such toat
n—se '

We shall now show that xe ;2 F
n=| "

If possible, x ¢ ”r;\l F,. Then there exists a

positive integer M, such that x ¢ F . Since F, I8
closed, and x ¢ F.. )




i —

d(x, F,)>0. Let dx,F,)=r>0,
- d(x, y) 27,

Thus, the open sphere §

VyeF,
r/2(%), and F, are clearly disjoint, and therefore

o s n>m=F, cF,
and this implies .

Xn€F, (“x,eF)=x, ¢ Sy2(x).

This is impossible, since {x,} converges to x. Hence x e ,; F
i

n=1

Now to show that xe N F js unique.
n=1

If possible, let y be another pointin A F
n=] i
Then y € F,, for every n.

= d(x, y) Sd(F,), for every n (by the definition of the diameter).
But, since it is given that d(F,) > 0 as n - oo,

Therefore on taking limit as 7 — oo,

d(x, y) <0. But d(x, y) 2 0 is always true. Hence d(x, y)=0,andsox=y.

Ex. If every decreasing sequence of non-empty closed sets whose diameter tends to zero have a non-
empty intersection in a metric space (X, d), then (X, d) is complete.

The following examples show that the condition lim d(F,) = 0, and that the sets F,’s are closed,
n—see
are both necessary in the above theorem.

Example 24. Let X be the real line R with the usual metric, and let F, = [n, o[.
Now X =R is complete. The sets F, areclosedand F; O F, > F,...> F,... But Al F, is empty.

Observe that lim d(F,) # 0.

n—yeo

Example 25. Let X be the real line with the usual metric, and let F, = 0, 1/x]
Now X = R is complete

and lim d(F,) =0, but n F, is empty.

n—eo

T, — W W r——
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Observe that F,'s are not closed.

._/ﬁeﬁnm‘an. A subset 4 of a metric space (X, d), possibly the whole space, is said to be of the firg
category, if it is the union of a countable family of nowhere dense sets. |

ie., A < X can be written as A=UIA,,,
n=

where each 4, is nowhere dense in X, i.e., int (4,) = ¢, for each n.

Otherwise it is said to be of the second category. It is important to note, that in a discrete space the
only nowhere dense set is the empty set, i.e., every non-empty set is of the second category. In particyla,
the set I of integers is of the second category in the space R of reals with the discrete metric, On the other
hand if (R, d) is a metric space with the usual metric, then the set I of integers is nowhere dense and
hence is of the first category. This shows that the set is not of the first or second category in and on jts
own, rather its category classification also depends on the metric space to which the set belongs,

Ex. Prove that
(7) Qs of first category in R, w.r.t. usual metric,
(if) every countable subspace of R is of first category in R, {

(##i) if X is of second category, and if X = 4 U B, then either 4 or B must be of seco

nd category,
(iv) X is of second category in itself if and only if the intersection of every countable family of
dense open sets in X is non-empty,

(v) if 4 is a dense subset of a complete metric space X, and if 4 = ;ﬂ G,, where G,’s are open
n=1 fie
in X, then X — 4 is of first category.

SRR P CIILY | FOr S w—" L p—

Theorem 12. Baire’s Category Theorem. If {4,} is a sequence of nowhere dense sets in a complete
metric space (X, d), then

X#U A4,

n=1
ie., Every complete metric space is of second category.

To prove the theorem we need the following lemma.

Lemma. Let A be a nowhere dense subset of a metric space, (X, d). Let G be any non-empty open set

1 in X, and r > 0 be any real number, then there exists an open sphere of radius less than or equal to r
| contained in G and disjoint from A.

Since A is nowhere dense i.e.,int 4 = ¢, andint 4 is the largest open set containing 4. Therefcic,
if G is any non-empty open set, then

GgA4,
G being non-empty and G ¢ 4, therefore 3 an x € G suchthat x ¢ 4.
Moreover G is open, 3 an open sphere S, (x), for some r > 0, such that
S, (x) cG.

Since x & A, we can choose a positive number r, < 7, such that




~

8,(x) ©8,(x), and S, (x) N 4= 9.
Thus x€S,(x)cG, and S, (x) " 4=¢.

Proof of the main theorem:
x is open, being a non-empty open subset of itself, and 4 is nowhere dense in X, then by the

lemma, for given  >0,0 <7 <1, 3 an open sphere S,,(x;) in X, such that
S(x)N A4, =¢

above

Let F, be the concentric closed sphere of radius %rl,

i.e., E =S’Ar|[x1]’

and consider its interior, int F; # ¢ Let X, € int _Fi . Since A 5 is nowhere dense, int FI contains an open

sphere Sr,(x) of radius r, < %, such that
Sra (x2) M A‘2 = ¢

S,,[x,) Since 4; is nowhere

Let F, be the concentric closed sphere of radius %rz, ie, F, =
e int F, and radius

dense, int F,, being non-empty, contains an open sphere Sr,(x;) centered at x,
r, < %, such that
Sf’a(IS) a A’3 = ¢

Let F, be the concentric closed sphere of radius %rs.

Continuing in this manner we get a decreasing sequence {F,} of non-empty closed subsets of X,

where
Fn = S—"n;‘Z[xn]"
and
F;¢+I = S-’Ir,”_] [xn+l] < Sr,,.ﬂ (xn-l-l) < S]‘,r“ [xu] = F:‘
i‘ew F;”.] c F;p V n.
Also

d(F,)=2r,/2<l/n, Vn
d(F,) >0, as n—eo

Since X is given to be complete, therefore by Cantor’s intersection theorem we conclude that

: F, contains exactly one point say x € X.
= xeF, Vn
=5 x €8y, [x,] < S, (x,), Vn
and Sr(x, )N A, =¢

n=




xEA” Vn

v 4
=2 xﬂm-l "
Hence, ot A, # X.

Ex. Use Baire’s Category theorem to prove the existence of everywhere continuous, nowhere

differentiable real-valued functions.

[Hint: Take
A, ={f €C[0,1]:Tx €[0,1~1/n], such that

l,f(x+}2_.f(x)|5n, for 0 < h < 1/n}.
If /€ C[0,1] has a derivative at some point, then / € 4,, for some n. Show that 4, is closed, and has

empty interior.]

4. CONTINUITY AND UNIFORM CONTINUITY
Definition. Let (X, d,), and (Y, d,) be any two metric spaces. A function f : X — Y is said to be
continuous at a point ‘a’ of X, if for given & > 0, there exists a § > 0, such that
d,(f(x), f(a)) < &, whenever d, (x, a) <é.
Equivalently, for each open sphere S,(f(a)) centered at f(a) there is an open sphere S;(a) centered at

a such that
f(S5(a)) < S.(f(a)

The function f : X — Y is said to be continuous, if it is continuous at each point of X.

Example 26. If (X, d) is a discrete space then every function f: X — Y is continuous on X.

For any a € X if we choose 6 < 1. Then

Ss(a) = {a}
f(Ss(a)) = {f(a)} < S.(f(a)) holds for each positive &.

If (X,d,), and (Y,d,) are any two metric spaces; then the constant function

and so

Example 27.
f : X =Y is continuous on X.
Theorem 13. Let (X, d,), and (Y, d,) be any two metric spaces and f is a function from X into .

Then fis continuous at a € X if and only if, for every sequence {a,} converging to ‘a’ we have
lim f(a,) = /() E
a, > a= f(a,) = f(a)

First, let us suppose that the function fis continuous at a point @ € X and {a,} is a sequence in 4.

LAY 2 . .

ie.,

isuch that lim a, = a.
n—yeo




O — e . gl S

L L

- is continuous at a, theref; i
@W‘ fi refore for any given ¢ > 0, there exists a § > 0, such that

@3‘ | d,(f(x), f(a)) < &, whenever d,(x, a) < § (1)
Again, since }1_1’1.1. a, = a, therefore 3 a positive integer n,, such that
5:‘ di(a,,a)<6, Yn2m
& From (1) putting x =a,, we have
\b
é,(f(a,), f(a)) < &, whenever d(a,, a)<8, Yn2m
=) dy,(f(a,), f(a)) <e, Vn>m
= {f(a,)} converges to f (a)
e, lim /(a,) = f(a).

We now assume that f'is not continuous at a; and show that though there exists a sequence {a,}
converging to ‘a’ yet the sequence {f(a,)} does not converge to f (a).
Since f is not continuous at a, therefore there exists at least one ¢ > 0 such that for every § >0

d,(f(x), f(a)) 2 €, and d|(x,a) <6, for some xe X .

, 1
Therefore, by taking 6 = o we find that for each positive integer » there is a, € X such that

dy(f(a,), f(a)) 2 €, and d\(a,, a) <£

Thus, the sequence {f(a,)} does not converge to f (a).

This shows that continuous functions of one metric space into another are those functions which
send every convergent sequence to a convergent séquence or in other words which preserve convergence.

Theorem 14. Let (X, d,), and (Y, d,) be two metric spaces, then f: X — Y is continuous if and

only if 7\(G) is open in X, whenever G is open in Y.

We first assume that fis continuous. If G is any open subset in Y, we shall show that /™' (G) is open
in X. (Recall that if G is a subset of Y then the set {x € X: f(x) € G}, consists of all points of X whose
images lie in G, is denoted by f"(G)). If £7'(G) = ¢, itis open; so we assume that f ' (G) # ¢. Let
xe f7(G). Then f(x) e G and since G is open, 3 an open sphere S,(f(x)) such that

S.(f(x)) < G, for some £ >0

Now by definition of continuity, there exists an open sphere S;(x)such that
f(S5(x)) = S (f(x), for >0
But 5,(f(x) < G.
Ss(x) € f7(G) = f7'(G) is open
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Now we assume that f~'(G) is open in X, whenever G is open in Y, and show that s Contiy

Let x be an arbitrary point in X, and let £ > 0 be given. Let S,(f(x)) be an open sphere in Ycemer‘q;
at f (x). B

This open sphere in an open set, so its inverse image is an open set which contains x.
e, S (Se(f (%)) is open in X
Since x € £~ (S,(f(x))), 3a 8 > 0 such that

S5 € £ S (S ()
This implies /(S5(x)) < S, (£ (x))

Hence, f'is continuous as x. Since x was taken to be an arbi

trary point of X. Hence fis continuoyg
at every point of X. '

Example 28. Let f:R — R be defined by

f(x)=sinx
in the metric space (R, d). It can be easily seen that f'is continuous. The ope!

n set ]0, 2z[ in (R, d) is
mapped to the closed set [- 1, 1]in (R, d)

Example 29. Let f:R — R be defined by

f(x) = x2.
Jfis continuous on R. f'maps the open set ] — 2, 2[ onto the semi-closed set [0, 4[.

Ex. The function f:X — Y of a metric space (X, dy) into a metric space (Y, d,) is continuous iff
the inverse image of every closed set contained in Y is closed.

[Hint: This follows from the preceding theorem by taking complements. ]
% Example 30. Let (X, d,) and (Y, d,) be metric spaces. Show that f : X — Y is continuous if and
only if f(A4) < f(A), forevery Ac X.
= Let fbe continuous and 4 be any subset of X. Then 1 ~'(f(4)) is closed in X,

Now CII= f(4)
= Ac f(f(4)
= AC ff(A) = T @A)
ie. S(4) < f(A).
Conversely, suppose f(@) c A, wit)




;
:

for every subset 4 of X
Let F be any closed subset of y g

using (1), we have M ex

TS Y e f (= F

—
" Fyg rypy
Thus f~'(F) is closed in x
Hence fis continuoys,
Definition. Let (X, d,) and (Y.d ; _ .
continuous if for eaclh €> 0 th 2) be two metric spaces Afunction f : X — Y is said to be uniformly

ere exists a § > () (depending on ¢ alone) such that
4 (f(x). f()) < &, whenever di(x,y)<8, Vx yeXx

=F

% Example 31. For any non-empty subset 4 of a metric space (X, d) the function f : X — R given by

f(x)=d(x, A), for xe X
is uniformly continuous. Also show that f(x)=0e=xe 4.

m By definition we have for xe X

d(x, A) = inf {d(x, a):a e 4}
By triangle inequality,
d(x,a)<d(x,y)+d(y,a), Vae Ac X, x,ye X
On taking infimum ‘ )
 d(x, A)=inf d(x, @) < d(x, ) + inf d(y, )

[+ d(x, y) is independent of a]
=d(x, y) +d(y, 4)
d(x, 4)—d(y, A) s d(x, y) (1
Since (1) is true for each x, y € X. Therefore on interchanging x and y,
d(y, A) —d(x, A)Sd(y, x) =d(x, ).
Thus ‘
|d(x, 4) - d(y, 4) |<d(x, y) sl

Now for each £ >0, choose a § S €
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then .
| f(x)= f(») |=|d(x, 4) —d(y, ) |sd(x,y)<b<e& [using (2);]
ie., |d(x, A) — d(y, A) | < €, whenever d(x, y) <&
Hence f'is uniformly continuous on X.
For the second part, let £ (x) = 0, i.e., d(x, A) = 0.
This implies that there exists a sequence {a,} in 4 such that
d(a,, x) = d(x, A)
lim d(a,, x) =d(x, A)=0
n—es

ie.,

=5 a, = x,asn—> oo
Therefore for a given & > 0, there exists a positive integer n,, such that
a, €S, (x), Vnzn
In particular @, € S¢(x). But a,, € 4.
Therefore for each £ > 0, S,(x) contains a point of 4 other than x.
Hence xe 4.
Conversely, let x € A, then there exists a sequence {x,} in 4 such that {x,} converges to x.
& d(x,,x) >0asn— o
But, since d(x, A) <d(x,x,), V neN, x, € 4
and d(x,x,) >0, as n—> o

d(x, A) £0. Hence d(x, A) =0
Example 32. Let (X, d) be a metric space then show that any disjoint pair of closed sets in X can be
separated by disjoint open sets in X,
m Let 4 and B be any closed subsets of X such that
AN B=¢.

Define a mapping f : X - R by

O e

dix, 4 +d(x, B) *€X

f1is well-defined.
Since d(x, 4) +d(x, B) # 0, VxeX. For if d(x, 4) + d(x, B) = 0 for some x € X, then d(x,A)=0
and d(x, B) = 0.
This implies x€e A = Aand xe B = B
ie., x € AN B, which is impossible (- 4 N B = ¢)
J/is continuous on X, Since the functions x — d (x, 4), and x — d (x, B) are continuous on X.

e




-

0, if
Clearly f(x)= { W e 4
l, if xeB

Let G={xeX:f(x)<i
then G = f" (- oo,%D, being an inverse image of an open interval IE m,l[ under a continuous mapping
fis an open subset of X. .
Moreover x € A implies f(x) = 0<-;—, ie, xeG
- ‘ AcG.
Similarly, H ={xe X : f(x) >%} is an open set of X containing.B. Also G n H = ¢. Hence the

~—

result.
Definition. Let (X, d), and (¥, d") be any two metric spaces. A function f: X — Yy is sai

homeomorphism if

d to be a

(i) fis both one-one and onto,

(i) fand £~ are both continuous.
By theorem 14 it follows that a homeomorphism induces a 1 — 1 correspondence between the open sets
in X and open sets in Y. _

Two metric spaces are said to be homeomorphic if there exists a homeomorphism between them.
by the following example.

But not all metric properties are shared by homeomorphic spaces as is shown
Ii’fxample 33. Let X={, %, %, ...,} with d the usual metric on the subsets of R, and let ¥ = N, the set

of natural numbers with the usual metric d’(= ). Then the function f : X — Y definedby f(1/n) =n
is a homeomorphism from (X, @) to (¥, a'). In fact every subset of X and every subset of Y is open in
the respective spaces. But (X, d) is a bounded metric space and (¥, d") is not. Also (¥, d") is a

complete metric space but (X, d) is not.
Definition. A function f: X —Y is called an isomeiry if

d(x,y)=d'(f(x), f(), VxyeX
Clearly each isometry is always one-to-one and uniformly continuous.
Two metric spaces are said to be isometric if there exists an isometry between them which is onto.
It is easy to verify that if two metric spaces are isometric, then they are necessarily homeomorphic. But

its converse may not be true as can be seen by the above example.
By definition it follows that isometric spaces possess all the same metric properties. Such spaces

are metrically identical and differ only in names of their elements.
Theorem 15. The image of a Cauchy sequence under a uniformly continuous function is again a

Cauchy sequence.
Let (X,d,), and (Y, d,) be two metric spaces and f : X — Y be uniformly continuous. Let

{x,} be any Cauchy sequence in X ; and let £>0 be given. Then, f/ being uniformly continuous, there
existsa § >0 (depending on g ) such that




e —,

dy (f (x) S (xn)) <& whenever d,(x,, X,) <0 (1)

Since {x,} is Cauchy corresponding to this 5 > 0 there exists a positive Integer n, (dep"“dinggn
ince {x, A

€) such that
dess s dy(x,,, X,) <0, for m,n2ny

From (1) and (2), we conclude that
dy(f(x,,), f(x,)) <E for m, n 2 n,
Hence {f(x,)} is a Cauchy sequence in Y.

S‘&U\ﬂ\‘T heorem 16. Let (X, d,) be ametric space, and (Y, d,) be a complete metric space. If fis a uniformly
ot continuous function from a subset A of X into Y, then f can be extended uniquely to a uniformly continuous
function g from A into Y.
We shall prove the theorem in the following steps.
(1) Existenceof g: 4 — ¥
(2) Uniform continuity of g
(3) Uniqueness of g.

(1) Let {a,} beany convergent sequence in 4 converging to a point x € 4. Also {a,} being convergent
must be a Cauchy sequence and since / is uniformly continuous, its image {f(a,)} isa Cauchy sequence
in Y. Again Y'is given to be complete, the sequence {f(a,)} mustbea convergent sequence in Y, and so
there exists a point y in ¥ such that

/(@)= y, ie, lim f(a,) =y

n—eo

Now we shall show that y depends only on x and not o

Let {b,} be another sequence in 4 such that {, } converges to x then by the triangle inequality in
(X, d,) we have

n the sequence {g, }.

dl(am bn) < dl(am X) + dl(x. b,,)

di(a,,b,) =0, as n — oo
And by the uniform continuity of f

\
b

= s )
(“a, = x and b, - x, a5 1 = o0)



*—

4(f(a,), £5,)) - 0
Nowﬁ'omthetriangleinequalityin(xd) ) 88 1 — oo
»dy

4 (b,), y) s 4 (f(5,), 1(

we have

a,)) + d, (f(au)! )
dZ(f(bn)- y) > 0, a8 # — oo
}1{1}. f(b,)=y.

This shows that y is independent of the s
Thus if we define

ie.,

equence {g,} in 4.

_ y=gkx)
Then g extends f from 4 to A which can be seen as follows:

Let x€ 4, then xe 4.
Taking a, = x, V n, the sequence {

a,} is a constant sequence in 4 and so a, — x.
Then g(x) = lim f(a,)

; But since f(a,) = f(x) we get

lim £(a,) = f(x), ¥ x & 4
S f(x)=g(x),Vxe A
Thus g extends fto 4.
(2) Let € > 0 be given. By uniform continuity of f'we can find § > 0 such that forall a, 5 € 4 we have

d(a,b)<8 = d(f(a) f(b) <k (1)
Let x, y be any point in A such that

d(x,y)<é
there exist sequences {a,} and {b,} in 4 such that a,— x and b, — y respectively.
ie., dy(a,, x) > 0 as n— o, and d,(b,, ) >0 as n - o
Hos d - d12 (x. ») > 0, 3 a positive integer n, (depending on r) such that

d,(a,, x)<r,d\(b, y)<r, Yn2n,
Now d,(a,, b,) S d\(a,, x) + d\(x, y) + d\(y, b,)
<r+d(x,y)+r=06, Vn2n,
It follows from (1) that
dy(f(a,), f(b)) <€ Vn2n,




By definition of g, we have
f(a,) > g(x),and f(b,) > g(y)asn ==

i.e., for each ¢ > 0,3 positive integers my, m, such that
dy(f(a,), g(x)) <¢€/3, Yn2m

and
d,(f(b,), g(x)) < €3, Vnzm

By triangle inequality in ¥
d, (g(x), g()) S dy(g(x), £(a,)) +dy(f(ay), £(b,)) + dy (f(B,), 8())-

Using (2) and definition of g,
d,(g(x), g(»)) <€/3+¢€/3+ g/3=¢, Vn2m=max (my, my, ny)

Thus di(x, ) <8 = d,(g(x), g(¥)) <& VxyE€ A
Hence g is uniformly continuous.
(3) We shall now show that g is unique. Let, if possible, there be another ex

A such that A is uniformly continuous.
We have forall x € 4

tension h: A - Y of f to

£() =/ () = h)

and forall xe 4
g(x) =f(x) = h(x), by taking limits

Hence gx)=h(x), Vxed
This shows that g is unique.
4.1 Banach Fixed Point Theorem
Definition. Let (X, d) be a metric space. A mapping f: X — X is said to be a contraction mapping, if
there exists a positive real number & with & <1, such that
d(f(x), f()sad(xy), VxyeX
we observe that, applying fto each of the two points of the space contracts the distance between them. )

! Obviously fis continuous.
Example34. If x = {x,} €],, then f(x) = { 5 } is a contraction mapping on J,. Forif y = {y,} is

any other point of /,, then

2\2 )
s (Z_2n _1
d(f(x), f(»)) —[gl(z 2) ] =2 d(x ) .;

1
If f(x)= x*,0< x < —. Then f is a contraction mapping on [0, —] with the usual

*Example 35. 3"

' ' metric d.




d(f(x), £(»)) = d(x?, y?y

=|x2-y2|=lx-yllx+yl<§3'|x-}"
d(f (%), f(») S 2 d(x, y)

Definition. A point x € X s called a fixed point of the mapping f: X — X, iff(x) = x.

Theorem 17. Banach fixed point theorem ty comp
.4 1 ; -emp. lete

metric space (X, d) into itself has q unique fixed prgwi’;?mracnon s L v
For all x, y € X, we have da(f(x), S() S ad(x, y) (1)

for some o, 0<ax <1
This implies that fis continuous.
Now choose any point x, € .X. Let us define a sequence {x,} by

%= f(0) %y = f(x)),..., Xpe1 = S (Xn)se.
Then

X, = f"(x,), VneN
We shall show that the sequence {x,} is Cauchy. For each positive integer » we have
d(x,, X,41) = d(f (x,.1), f(x,)) S @ed(x,_y, X,)
<o d(X,5:%,.¢)

<a? d(x, 3, %, 5)

< a” d(xy, x;) «{2)
By triangle inequality, we have for » 2 m
d(%,,. %,) S A(x,, Xyii) + I Xyiis Xia) Fovo + WX, 215 %)
S dixg, 2) o™ d(t, %) ¥ .0 d,%)

=a"[l+a+a’+..+a"™" " d(xy, x))

o (-a")

d(x,, x,)
1-a
o, T 0, as m — oo [ra<i] ‘.

l-a
Hence {x,} isa Cauchy sequence, and X being complete implies x, — x, for some x € X.
Since f is continuous, therefore we have
7@ = f(lim %)= im /(5,)= lim x,,, = 2

Hence,

Jx)=x




To prove uniqueness, suppose f () = y, for some y € X then
d(x, y)=d(f(x), f(»)) < ad(x, y)

Since & <1, and d(x, y) 2 0 therefore we must have
cdx,y)=0, ie,x=y.

EXERCISE

1. Let {x,f} be a sequencein H,, ( H,, asdefined in Q.9 Exercise, p. 716). Let x = {x,} € H_, then prove that {x*}

converges to x in A if and only if klim x¥=x,VneN
—joo

[Hint: Here d({x,}, {y,}) = 'Lz_;_!n_', =, |S1, |3, ISII, V neN, suppose kl xk = X, Vg

=]

2
Choose a positive integer m such that Y, — < &/2. Show that 3 a positive integer my such that if

n=m+]1
| - et N
k2>m, then X <gf2
n=m+1 2”
Deduce that if £ > m,
d(x*, x)<e

For the converse note that

oo k i oo
o= LIl Lo, vazm

. Let lim x, = x, and

n=poo

and x, y € X. Prove that the sequence of real numbers {d(x,, y,)} converges to the real number d(x, y).

lim y, =y, where {x,} and {y,} are sequences of real numbers in the metric space (X, d)
n—s

[Hint: d(x,, y,) < d(x,, x) + d(x, y) + d(», y,)].
. Show that a Cauchy sequence is convergent < It has a convergent subsequence.
- Prove that if (X, d) is a complete space, and each x € X is a limit point of X, then X is uncountable.
- Give an example of a complete metric space (X, d) and a sequence of non-empty closed sets {4,} in X with

Ay 2 A, D 4;...2 A,... such that n A, =¢

[Hint: The space R of real numbers with the usual metric is a comp
closed sets

lete metric space. Consider the sequence of

An =[n’ °°[s n EN: nr:l An'=¢]
- Give an example of a homeomorphism f: X — ¥ and a Cauchy sequence {x,} in X for which {f(x,)} is not

Cauchy in ¥,
[Hint: Let X = {1,%,%,_,} with d the usual metric and d’ the discrete metric. Then the identity function

I:(X,d)— (X, d") is a homeomorphism, but the Cauchy sequence {l/n} in (X, d) has its image {l/n} in

(X, d’') which is not Cauchy].




10.

11.

12.

13.

14,

15.
16.

17.

18.

5.

that f (x) = g(x), for every x in 4, show that £ (x

)=g(x) forevery x e 4.
defined on R wh;

ch satisfies the functi : - ,
I fix) = mx for some reg] numb:r m.ctmnal )RR

Let f be a continuous real-valued function
Show that the function must have the f,,
Let {x,}€ /. Prove that f defined by fix,} =

2 ax
. n=1
function on /.

r
n» @,'S are real numbers, is a continuous real-valued

Let fbe a real-valued function on a metric space X. Prove
{x:fix)<c} and {x:fx)>c} are open in X for every ¢

Let (X, d) be a metric space such that d(x -
V) <1, Vi, Xy
£(x) = {d(x, %,)}, x € X, then prove that X,y€ X, and let {x,} be a sequence in

(i) fis a continuous function from X into H .

that fis continuous on X if and only if the following sets
€R.

(if) If the range set of {x,} is dense in X, then f'is one to one.

Give an exaTnple of a function f:X - ¥ which is one-to-one. onto Y and continuous on X but not a
homeomorphism.

[Hint: Let X = [0, 1] and let d be the usual metric and @’ the discrete metric. Then the identity function
1:(X,d") > (X, d) is one to one continuous but not a homeomorphism. ]

If (X, d) is a complete metric space and if F is a family of real-valued continuous functions defined on X such that the
set {f(x): f€ F} is bounded for every x € X. Then there is a non-empty open set G C X, and an M> 0 such that
| f(x)|< M forevery x € G and for every fe F. [This is known as uniform boundedness principle].

Prove thatif f : X — Y is an isometry from X onto ¥, then for every Cauchy sequence {x,} inX, {f(x,)} isa
Cauchy sequence in Y.

Prove that if the spaces (X, d) and (Y, d') are isometric then either they are both complete or neither is complete.

Let (X, d) be a metric space with x, € X. Define f: X - R by f(x)=d(x, x,). Prove that fis uniformly
continuous on X.

X
Let ¢: C[0,1] - C[0,1] be defined by 9(/) = I ¢ f(t)dt, where atis a constant.
(a) Find asuch that ¢ is a contraction mapping.
(bj Also show that for each value of ¢, ¢ has a unique fixed point.

Prove the ‘converse’ of the Banach’s fixed point theorem: if for each non-empty closed subset 4 of a metric space X,
and for each contraction mapping f : 4 = A, fhas a fixed point, then X is complete.

COMPACTNESS

The concept of compactness is an abstraction of an important property known as ‘Heine Borel Property’
posed by subsets of R which are closed and bounded. Heine Borel theorem states that if / c R is a

closed interval, any family of open interval in R whose union contains / has a finite subfamily whose
Compactness is concerned with covering  the sets by open sets. Before defining compactness we need
the following definitions.

Definition. Let (X, d) be a metric space. A family of subsets {4,} inXis called a cover of any subset
AofXif A ;—G A, A, A isany non-empty index set. If each 4,, & € A is open in X, then the cover

aeh -

{4,} is called an open cover of A




A subfamily of the family {4, } which itself is an open cover is called an open subcovey
number of members in the subfamily is finite it is called a finite subcover of A.

of4, If the

Definition. A subset A-of a metric space (X, d) is said to be compact if every open cover of da

of a finite subcover, i.e., for each family of open subsets {G } of X for which i Ga24, there exi
8ts

a finite subfamxly say {Gq,, Ga,,..., Ga,} such that 4 ¢ u Gy, _

A metric space (X, d) is compact if X is itself compact i.e., for each family of open supyg
of X for which U G, = X, there exists a finite subfamily {Ga; :i=1,2,...n} such that

acA

ets {Gq}

X=0G,,
ILLUSTRATIONS

1. Any closed interval with the usual metric is compact.
2. The discrete space (X, d), where X is a finite set, is compact.

3. The space (R, d) where R is the set of reals and d is the usual metric is not compact, for the
cover {]—n,n[:neN} is such that u 1= n, n[ =R, which do not have a finite subcover,

Example 36. Prove that the open interval ]0, 1[ thh the usual metric is not compact.
-l oo
s  The family of open intervals {]; l[: n=2, 3} is such that U ]l, 1[ =]0, I[. Therefore
n=2 n
1
{:l; 1[ tn=2, 3} is an open cover of ]0, 1[, which has no finite subcover.

Example 37. Let X be an infinite set with the discrete metric. Show that (X, d) is not compact.
m Foreach x e X, {x} isopeninX

Also U x}=X
xeX
Therefore {{x} : x € X} is an open cover of X and since X is infinite, this open cover has no finite
subcover.

Theorem 18. Every closed subset of a compact metric space is compact.

Let (X, d) be any compact metric space and F be any non-empty closed subset of X, We shall show
that F' is compact.

Let {G, : @ € A} be a family of open sets in X such that
U Gy F
ael

Then ( U G,) U (X — F) is an open cover of X and by compactness of X it has a finite subcover.
aeA '
say,




or UGGIQF

Hence F is compact.

» Theorem 19. Every compact subset F of a metric space (X, d) is closed.

Let F be any compact set. To prove that F is closed we shall show that F* is open.
Let ye F° and X € F then x # y

d(x, y) > 0;’let d(x, y) = r,, Then the open spheres S, (x) and S,, () are such that
Sy, () NS, ()=4¢
For if z belongs to both § L (x) and § ¥ (»), then

d(zx)<tr, wd @<
and by the triangle ingquality

n=r

M| -

d(z, %) d(x, ) +d(z D <57+

which contradicts the fact that d(x, y) =7y

Now consider the collection {S i (x):x € F}

(W S%,. (x) 2 F
xeF *

Since F is compact, there exists a finite number of open spheres, say,
Sé‘rx, (xl)' SJ:""xz (xz ),K, S%rx’ (xn)

of open spheres of F. This collection is such that

such that
JL-JI S,.x'p(x:) 2 F
. r:; S,{ o) The set 4, is an open set, being the intersection of open spheres, containing y.
y - i=l rxf ’

: - h i, therefore we have
Since S*rx‘(x) N S*,x‘(y) =9, 'for eacl i

| S*rx'(x) N Ay =¢



And 50 (:Ul Sy, () 1 Ay =9
This implies ¢

i hence F is closed.
i therefore F° is open and
A = F¢ and each 4, is open,
Now y:)ﬂ Y

Corollary. A4 subset A of a compact metric space (X, d) is itself compact if and only if it is closed in
&, d). '

~ - Theorem 20. Every compact subset A of a metric space (X, d) is bounded.

Suppose that 4 is compact and consider an open cover of 4 consisting of open spheres of radii-1
ie., AC U Si(x)
xe A

Since A4 is compact, there must exists X, X,...x, such that

n
4dc et 81(x;)
Now let M = max d(x;, x;), 1<i< j<n.
Let x, y € 4 be any two elements then there exist elements x; and x;

such that
x € §(x;), and y ESl(xj)

* By triangle inequality

d(x,y) <d(x, x,) + d(xi,x)+d(x;, ) <1+ M+ l=M+2
Hence 4 is bounded.
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» SO we assum i
there exists an open cover (G} of [a, € a < b. If possible, let [a, b] be not compact, then

Lcta]=as bl=blIldCl=£Lt_?_1_
2

So [a,b] =[a,, b]= LAY [c1, by).

[a,, b,] denote one of these inliervalsw_iﬂnﬂnspmperty.'rhus [a,, b,1c[a,, b and b, —a, =%(b. -a),
| Let ¢, = % th
Therefore [a,,

b1=[a,, c;]U ey, by) As before at least one of these intervals in the union cannot
be covered by a finite subfamily of {G,}. Denote that interval by [a,, b,]. Then,

Loy, ) laz b1 (o b1 and by -0y =3 (b, - ) = o - a)

Continuing this process, we obtain a sequence {la,. b,]} of closed intervals such that each interval
[a,, b,] cannot be covered by a finite subfamily of {G,}, and

[an-l-l’ blH-l] o= [an' bu]' v neN

with b, - a, =2:_1 (b, — a)) which tends to zero as n tends to oo,

ie, dla,,b,]=|a,-b,| >0, as n — oo,

Since R is complete, and {{a,, b,]} is a non-empty decreasing sequence of closed subsets of R
such that :
d([a,;5,]) 20,88 n 5
Therefore, by Cantor’s intersection theorem

A [a,. b,] contains exactly one element say x.
n=| '

ie., _ x€la, b} Vn and [ﬂ,,»lb.]‘:[ﬂl.bl]:[a. b,V n

wf1)

And so x €[a, b} Now since {G,} is an open cover of [a, ), therefore x € G, for some
where '

ll.’

G, is open in [a, b).

[}




This implies .
G, = HnN[a bl whereHisopenmR

Now x€G, =>x€H
But H is open in R. Therefore

there exists an open sphere
Sg(x)=]x-8,x+8[-£>0

2)

such that
xe]x—-s.x+£[<;H

1
Since bu - a, =_2_n:]_(bl —;1,)-—-)0, as n — °°
Therefore, for above £ > 0, there exists a positive integer 7o such that

b, — @, <& VY n2n

In particular,
by,

Therefore [, , b, ] < Jx-ex+elc H, by (1) and (2)
Now [a,, bl < [a, b] and [a, b,,o] cH

- a, <€

a single set G, of the cover {G,} which

Therefore [a,, b,)] < Gy, L€ (@, b,,] i covered by

contradicts the fact that [a, , b, o] ismote
that [a, b] is not compact is wrong. Thus [a, b] is compact.

overed by any finite subfamily of {G,}. Hence our assumption

Example 38. Consider the bounded set 4 = ]0, 1], 4 is not closed. Since 0 is a limit point of A which
does not belong to 4. Let G = {]1/n, 2[ ; n € N}. Gis an open cover of 4 and there is no finite subset of

G which is a cover of 4.

Example 39. Let 4 =[0, =], 4 is a closed set, but it is not bounded. Consider the family of ine scts
G={ln-2,n[:neN}

pen even cover of 4. But G has no finite subcover for 4.

Gisano

e




Theorem 22. Continuous image of a compact set is compact.

e metric

of f(X);

Let (X,d,) bea compact metric,space and f be a continuous function from X into th

space (¥, d,) then f(X), the image of X under fis compact in Y. Let {7} be any open cOVer
which we denote by Yi(}’l c Y), i.e., each Va is open lIl Yl! and -

Y, = U V,, Ais any index set
aeA

X=1m) =1y V)= /0

Since V,, is open in Y, and fis continuous.

.. f7\(%,) is open in X. Hence {f “1(,)} is an open cover of X. But X is co
there exists a finite subcover, say

mpact, therefore

(7 Vay) [ Vay)ons | "' (Vay)} of the open. cover {f~'(V,)} of X such that
X= U
Let ye ¥, = f(X). Then there exists an x € X such that
y =f).

Since xe X and X=VU [ () -X€ 0 /7' (%,), and hence x ¢ £\ 0%,), for some i
i=1 i=l

£ (x) € Vg, for some i

or
y € ¥,, for some i

ie.,
}; = Va;
co Wy Vagseoos Va} is @ finite subcover of the open cover {/o} of X Therefore, Y, is compact.

If fis onto then ¥ =, and so Y is compact.
X Example 40. Let A be a non-empty compact subset of a metric space (X, d) and let F be a losad

subset of X such that 4 N F = ¢, then d4, F) > 0.
s If possible d(4, F) = 0. Since the function x — d(x, F) is continuous on 4, and 4 being compact

implies d(x, F) assumes minimum value for some x € 4, say Xo. And so
d(xy, F)=d(4, F)=0



—

This implies x, € F = F N
Hence x, € AN F, ie.,, AN F # ¢, which is a contradiction.

5.1 Compactness and Finite-intersection Property

Definition. A family of subset of a non-empty set X is said to have the finite-intersection Propers,
(FIP) if every finite subfamily has non-empty intersection.
Ex. The family {[ — », n]:n e N} of closed (intervals) subsets of R has the FIP.

Theorem 23. The metric space (X, d)-is compact if and only if every family of closed sets in (X, d) wigh

the FIP has non-empty intersection. o
Let (X, d) be compact, and let {F,} be any family of closed sets in (X, d) Wrﬂl__F_l]_’ If possible, Je

D Fy is empty, then on taking complements in X, we get
v Fp=X

aeA
Thus the collection {F;z} of open sets, being complements of closed sets F, in (X, d), is an open
cover of the compact metric space X ; which has a finite subcover say F;fl, F.,fz,K, K,
n (
UF; =X

ie.,
i=1

Taking complements
NF,=¢

i=]
which is a contradiction to the fact that {F,} has the FIP. Hence Koy F, is non-empty.
Conversely, suppose every family of closed sets in (X, d) with the FIP has non-empty intersection.
In order to show that (X, d) is compact, let {G,} be an open cover of X, Then UAG" =X
ae
Taking complements |
N G=¢

ael

Therefore {G7} is a family of closed sets in X, whose intersection is empty. Therefore, by hypcthesis
this family does not have the FIP and so there exists a finite subfamily, say Gz, Gz, ... Gz, suci tist

NG, =4

I=1

ie., (C) Ga;) =¢' or ::jl G‘“ =X

- Hence {Gy, :i=1,2,...,n} is a finite subcover of {G,}, and so (X, d) is compact. ™



e

Definition. A metric space

(X d) is saj , _ o
subset of X has a limit point, d) is said to have Bolzano-Weierstrass Property if every infinite
The space R with the usyg] metri :
(1,2, 3,...} is an inifinite set in R with o oy ot have Bolzano-Weierstrass property for the set

0o limit points,
Definition. A metric space (X, d) is Sequentially compgcy if every sequence {x,} in Xhas a convergent
subsequence. n
Theorem 24. A metric space (X, d is Sequentially compact if and only if it has the Bolzano-Weierstrass

Let (X, d) be sequentially compact metic Space. Let 4 be an infinite subset of X. We shall show that
A'has a limit point. Since 4 is infinite, we can always extract a sequence say {a,} of distinct points from
A S seq {a,} contains a convergent subsequence {an}.

Let lim a,, =a. Consider any neighbourhood Se(a) of ‘a’. Then € >0 implies there exists
a positive integer m such that

d@any.a)<e, Vk2m

=& ank ESg(a)» VkZm

This implies a is a limit point of 4.

Conversely, suppose (X, d) has the Bolzano-Weierstrass property. Let {x,} be an arbitrary sequence
in(X,d)and S = {x, : n € N} be its range. There are two possibilities—either S is finite or infinite.
(i) IfSis finite, then there must exist at least one number x € § such that x, = x for infinitely

many values of » and so the sequence {x,} has a constant subsequence and hence convergent.

(1) When S is infinite, then by hypothesis § has a limit point say xy. Therefore for each € > 0, the
set § N S.(x,) is infinite. Choose

Xm € S N 8i(x0), xpy €8N Sy2(x0), Xny € S O Sy3(xo)...

Having chosen xn,, Xn,, Xn,,..

. and so on.

i x"k choose x”k+| €SN Sl,r'k+l(x0) with Ny > ng, The
subsequence {x,,} of {x,} converges to x, since X, €S N §, /t(Xo) which implies
d(xn,, xo) 1/k and hence (X, d) is sequentially compact.
Theorem 25. Every compact metric space (X, d) is sequentially compact.

Suppose A4 is an infinite subset of § which has no limit point in X. Then for each x e A, there is an
€, >0 suchthat Sg (x) N A = {x}. Otherwise x would be a limit point of 4. Clearly the family of sets,
{Se,(x): x € 4} U {X — A4} is an open cover of X which admits no finite subcover, this contradicts
the compactness of X. Hence 4 must have a limit point in X, Therefore by the above theorem X, d) is
sequentially compact.

» 5.2 Relative Compactness, £-Nets and Totally Bounded Sets

Definition. A subset A of a metric space (X, ) is said to be relatively compact if 7 is compact.




We have seen that compact sets are always closed, so we can say that compact sets are “’hﬁ"ely

compact.

e -Net
Let 4 be a subset of the metric space (X, d). Let € be a positive real number. Then by an € -net of

A we mean a non-empty subset B of 4 such that for any a € 4, there exists a point x ¢ g With

d(a, x) <e.
In other words each point in 4 comes within € -distance of one of the points in the set 3.

For example suppose 4 = R?. Thentheset B= {(m n):mn=0,+1,+2,+ 3...} constitute ap
V2
g-net for R? provided € > T
It is easy to see that a set is bounded if and only if it has an € -ner.

Definition. A non-empty subset ‘A’ of a metric space (X, d) is said to be totally bounded if for any ¢ > ¢
there exists a finite &-net for A, i.e., if for every &> 0, there is a finite number of open spheres of

radius € whose union is 4.

ie., A =xL:BS! (x),

where B is a finite € -net for A. Clearly total boundedness implies boundedness. Since a totally bounded

set is the union of a finite number of bounded sets (open spheres). But the converse is not always true. In
the case of Euclidean spaces the converse also holds. In general this is not so as can be seen by the

following examples.
Example 41. Infinite discrete space X is bounded but not totally bounded, for it has no finite -.} -net,

since
8y2(x) = {x}, x € X and X is infinite.

Example 42. Consider the space l, consisting of sequences {x,} of complex numbers such that
S |x, P <o,
n=1
and the metric is defined by
o V2
d(x, y) = [Zl | Xy = Vn I’) » where x={x,}, y={y,} €],

» Let 4 be a subset of /, consisting of sequences
e=(,00,..), ¢ =(010,...,0), e;=(0,0,1,0,0,...,0
since d(e,, e)= J2,Vi # J, therefore 4 is bounded, we shall show that A is not totally bouncad.

Observe that 4 has no finite 715-net, for if it has, then there exists a finite set B of X such that



L —

d(ei'x)<‘l‘ and !
<2 d(ef’y)<7—2-. for i j, and x,yin B

Clearly x # , forx =y implies by triangle inequality

Ji=d(epe;)Sd(enx)*d("'e‘)‘TJ'f .

So for each e; in 4 there is an x in B with

et N th
B, which is a contradiction to the fact that B s ffn?::"e property. Thus there corresponds an infinite set

Ex. Every subset of a totally bounded set is totally bounded

g HFT | S i
on ﬂrheorem 26. Every totally bounded metric space (X, d) is separable. TW" 26 +o 23 srademarbedy

Since X is totally bounded, therefore for each positive integer n it has a finite 1/n—net,say 4,.
Then A, is a finite set, and

= U 8,
4, 1fn( )
Let 4= Y A,. A is a countable subset of X, being a countable union of finite sets 4,. We shall

now prove that 4 is dense in X, i.e., A = X. For this, let x be any element of X. Let S,(x) be any open

; o 4
sphere centered at x. Choose a positive integer 7 such that %< €. Since 4, is ;-net, therefore

xeX= a::l( Sl,,,,(a) implies X € Syn(a) fdr some a € A,. This implies
d(x,a) < % <€
ie., d(x,a) <&, andso a €S, (x)
Therefore S,(x) N 4, # 9, and hence S,(x) N A# ¢
.. x e 4. This shows that 4 is a dense subset of X.

Corollnry Every compact metric space is separable.
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Lemma. [f A is an infinite subset of a totally bounded metric space (X, d), then for each ¢ > 0, ther
exists an infinite set B ¢ A, such that d(B) < &.
Let €>0 be given. For £/3>0, (X, d) being totally bounded, has a finite £/3 net

{x;. x3,..., x,}. Then 2

X= ‘_UI Se3 (%))

A=tL-)| AN Sy(x) [+ Ac X)
This implies at least one of the sets 4 N S,5(x;) is infinite ("~ A is infinite) call it B, Clearly
Bg A andd(B)<2TE<e.

Theorem 27. A metric space (X, d) is totally bounded if and only if every sequence in X contains g
Cauchy subsequence.
Suppose (X, d) is totally bounded and let {x,} be any sequence in X. Let A denote the range set of

the sequence. If 4 is finite then there is nothing to prove. Otherwise by the above Lemma 3 an infinite
set B, ¢ A, such that

d(B) <1
Choose a positive integer n, such that x, € B,. Again by the same argument 3 an infinite set
B, C B, such that
1
d(Bz)<5

Choose a positive integer 7, >, such that x,, € B,. Continuing in this manner we obtain a
subsequence {x, } of {x,} such that x, € B, with d(B,) <% and By, © B, k=123 ...

We shall now prove that {x,,} is Cauchy.

Let £ > 0 be given. Choose a positive integer k, such that ?1— <€ L
0
<. For k, m2 ko we have by our construction of B,'S; Xu, X, € By,, and d(B;,) < LS

ko

= d(x,,k,x,m)<i<£
ko

= {x,,}is Cauchy. Hence every sequence in (X, d) has a Cauchy subsequence.
Conversely, suppose (X, d) is not totally bounded.

Then there exists e, > 0, for which there is no finite €,-net for X.

Let x, € X be arbitrary. Then S, (x,) # X (for otherwise {x,} is an &,-net for X).




» Exampledd. A subset A of a metric space (X,

-

This implies 3 x, € X such that

x2 € Sgﬂ(‘rl )n i.e-, d(xz, xl) 2 80
Again we have Seo(%1) U Seo(x;) # X (for otherwise {x,, x,} isan &
e X such that

x; € S‘O (x;) v S‘O (xz) ie., d(xs’ xl) 2 & and d(x,, xz) 2 €
x,) 2 &g, for n#m

-net for X), therefore there
exists ¥3

Continuing in this manner we obtain a sequence {x,} in X such that d(x,,
This implies the sequence {x,} is not Cauchy and so it has no Cauchy subsequence.

Theorem 28. A metric space (X, d) is sequentially compact if and only if it is complete and totally
bounded.
.} in X' has a convergent

Let (X, d) be sequentially compact, then every Cauchy sequence {x
subsequence and hence it must itself converge. Therefore, (X, d) is complete.

Again if {x,} is any sequence in X then it has a convergent subsequence and so by the above
theorem (X, d) is totally bounded.

Conversely, suppose (X, d) is complete and totally

totally boundedness of X implies {x,} hasaCauchy subs
therefore the sequence {x,,} must converge and hence (X, d) is sequentially compact.

The subspace X = 10, 1[ of the real line is totally bounded but certainly not sequentially
compact, for consider the sequence {I/n}, which has no convergent subsequence.

Note than X is not complete, since it is not closed.
d) is totally bounded if and only if 4 is totally bounded.

that 4 is totally bounded, it is enough to show that every
.} be any sequence in 4. Let £>0 be

bounded. Let {x,} be any sequence in X then
equence say {Xn }. Butsince (X, d) is complete,

Example 43.

s Let A be totally bounded. To show
sequence in A contains a Cauchy subsequence. Let {x
given. Then x, € A implies |

sz3(xn) NA# ¢

ie, 3Ja,e A suchthat d(a, x,) <€&/3 (1)

and A being totally bounded implies {g,} contains a Cauchy

So we obtain a sequence {a,} in4,
0,3 a positive integer m such that

subsequence say {a,, }. Therefore for € >
d(a,,j.a,.k)<£/3, Von,m2zm (2)

By using triangle inequality and from (1) and (2), we have
d(xnj; xnk) S d(xﬂjt aﬂj) + d(alt}i aill) + d(a,,k, x'ﬁ‘)

<g/3+e/3+€g3=¢ Vn,m2m

Hence, {x,,} is 8 Cauchy subsequence of {xn} -



»

Therefore, A is totally bounded. Lo &
totally bounded set 4 , is itself totally bo

The converse is obvious since 4, being a subset ofa '
In order to show that sequential compactness implies compactness We need the notion of Lebge e

number for an open cover.

Lebesgue number for covers
Let {G, : @ € A} be an open cover of a metric space (X, d). A real number A > 0 is said to e

Lebesgue number for the open cover {G,} if for each subset A of X with d(4) < 4, there i_s at least one

set G, which contains 4.

Theorem 29. Lebesgue covering lemma. Every open cover of a sequentially compact metric space

(X, d) has a Lebesgue number .
Let {G, : @ € A} be any open cover of X. Assume that it has no Lebesgue number. Then for each

natural number  there is & non-cmpty set ; © X ‘with d(A,) <— such that
% :
A4,  G,, forevery a € A
For each n € N, choose a point a, € 4,. Since X is sequentially compact, the sequence {d,}

contains a convergent subsequence, say {a,,} -

Let lim a,, =x
k—roo
Now since xe X = U G, implies x € G,, for some @ € A. G, being open, therefore there is

A
an £ > 0 such that i

S G
For the above € >0, a», — X, and d(4,,) = 0, as k — « implies there exists a positive integer

ko, such that
d(an, . ¥) <€/2, and d(4y, ) < €/2 HG,

Let y be any element of 4, ko’ then by using triangle inequality, and (1) we get
d(y, x) <d(y, a,,ko) - d(a,,ko, X)
< d(4nyy) +d(an, %)
<gl2+¢gl2=¢
This implies that y € S,(x) € G,. Hence 4,, < G,, which contradicts the fact that for each
natural number n, 4, & G,. Hence, {G,} must have a Lebesgue number. !

['.' a,.ko E'An;-ul
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We are now in a position to prove the converse of the Theorem 25, which will establish the equivalence

of compactness and sequential compactness in metric spaces

Theorem 30. Every sequentially compact metric space (X, d) is compact
Let {Gal},e:::“i Ezc:bcover of X. Since (X, d) is sequentially compact therefore by above lemma
(G,} has @ gu ersay A > 0. Also (X, d) being sequentially compact is totally bounded and

. A
so it has a finite =--net, say {x,, x;...x,}.

n
Then X = ::: Sﬂﬁ (xj)
Now foreachi, 1 i <n wehave d(Sy5(x;)) < 231 < A, and so by definition of Lebesgue number

there exists at least one Gg; such that

Sis(x) € Ggpi=12,...m.
This implies L_Jl Sa (x) < C,)l G,

n
ié., Xc L:; G,

Hence {Gq,» Guysevos Ga,} is a finite subcover of {G,} and so (X, d) is compact.
if it is sequentially compact.

Corollary. A metric space is compact if and only
if it is complete and totally bounded.

Theorem 31. A metric space is compact if and only

Follows from theorem 28 and the above Corollary.

Theorem 32. A closed subspace of a complete metric space is compact if and only if it is totally

bounded.
Since a closed subspace of a comple
theorem.

We have seen that compactne
the following equivalence in a metric space.

(1) Bolzano-Weierstrass Property
(2) Compactness
(3) Sequential compactness

(4) Completeness and totally boundedness.
As a consequence of the Lebesgue covering lemma and the above corollary, we have the followmg

useful result.

Theorem 33. Let f be a continuo
(Y, d,). Then fis uniformly continuous.

te metric space is itself complete, result follows from the above

ss is another name of Heine-Borel Property. Our results so far establish

us function from a compact metric space (X, d,) into a metric space

A




Y

Let € > 0 be given. Foreachxin X, f~ (Sm(f(x))) 1sanopensubsetoonunmmngx belng
inverse image of an open sphere S,/,(f(x)) in ¥ under the continuous function fiX 5y o

Therefore, the collection {f~'(S,,(f(x)))} is an open cover of X. Since X i is Compact, therefy,
by the Lebesgue covering lemma and above corollary, this open cover has a Lebesgue number, g
8> 0. Let x, y be any two elements of X with d,(x, y) < 8, then the sct {x, y} is a set in ¥ :1'
diameter less than § and so by the definition of Lebesgue number % ye (Se/2(x")) for some Yey

ie., S, f() € S, (f (")),
= d,(f(x), f(x')) < €/2, and d,(f (»), f(x')) < €/2
By triangle inequality,

=€

(), fO) S, (f(x), f(x)) + dy(f(x'), () <

Hence fis uniformly continuous.
Aliter.

Let £ > 0 be given. / being continuous on X, implies foreach x € X; thereexists §, > 0 (depending
on € and x) such that for x' € X

d\(x',x) <8, = d)(f(¥'), f(x)) < /2 (1)
The collection {S5,,(x):x € X} of open spheres forms an open cover of the compact space X,
therefore there exists a finite subcover {S5;2(x;) : x; € X,1<i < n} such that

Nlm-—

Nlm

X'= Y S5(x) (2)
Choose & = rmn{(‘iz1 52—2 52"} then & > 0; since each §, > 0.

Let x, y be any two elements of X, with d,(x, y) < &. Then by (2),
X € Sau,z(xi) for some i.

Therefore, using (1) we have

é .
di(x, x;) < "QL <6, =24d,(f(x), f(x,)) <¢/2 ..(3)
Also, by triangle inequality, we have
é i
d,(x;, y) <d,(x;, x) + d,(x, }’)‘(%*'5 %‘ ?‘=6i |
(by the choice of §) |
and so, again from (1)
(4

d,(f (%), f(¥)) < g2
From equations (3) and (4), using triangle inequality, we obtain




d
2(f(%), £() < d, &), £(x)) + dy(s (x), f(»)

. : <,£/2+£/2=£_
Hence f is uniformly continuoys.

Definition. A collection F of functions from th i i i
called equicontinuous, if for each ¢ > 0, there e:i::::.“:ssfa:e s(‘;:’l; fI;;)ltto i i
d(f(x). ) < &, Whenever d(x, y) < &, forall x, y e X, andall feF.
According to this

definition, the functi, :
) ons belongin iconti i i
i, ging to the equicontinuous collection are uniformly

EXERCISE

. If 4 and B are two compact subsets of a metric space (X, d). Prove that A U B and 4 N B are compact.

2. 1f4 and B are non-empty subsets of a metric space (X, d) and B is compact. Prove that d(4, B) = 0 if and only if
A N B is non-empty. .

3. Let (X, d) be any metric space and let 4 and B are subsets of X. Prove that if 4 is closed and B is compact and
d(4, B)=0,then 4 A B # ¢, '
4. If 4 is a compact set of diameter d(4). Prove that there exists a pair of points x and y of A such that d(x, y) = d(4).

5. If A and B are disjoint compact sets in a metric space (X, d), then prove that d(4, B) > 0. Show also that there exists
disjoint open sets G, and G, suchthat 4 ¢ G,, B ¢ G,.

6. Prove that a metric space (X, d) is compact if and only if every family of closed sets with an empty intersection has
a finite subfamily with empty intersection.

7. If {F, : @ € A} is an infinite family of closed sets with the finite intersection property, and one of the sets of the
family is compact. Prove that r'\A F, is not empty.
ae

8. LetX={l, % %} and let be the Euclidean metric. Show that the set {1, % %} is chdsed and bounded set in
(X, d) but not compact. Explain why this does not contradict Heine-Borel Theorem.

9. Show that a subspace of R” is bounded if and only if it is totally bounded.
10. Ifdisa subspace of a complete metric space, show that A is compact if and only if 4 is totally bounded.
11. Prove Ascoli’s theorem: A closed subspace F of C[0, 1] is compact if and only if F is equicontinuous and uniformly
bounded.
12. Show that a closed subspace of a complete metric space is compact if and only if it is totally bounded.
13. Prove thatameuicspace(x,d)isboundedifand only if it has an € -net, for some £ > 0.
14. Prove that boundedness and total boundedness are equivalent in Euclidean spaces.

15. Let(X,d)beacompactmeﬂ‘iCSPa“mdlet (Y, d") be any metric space. Prove thatif f: X =Y is one to one

continuous and onto, then fis a homeomorphism. ' ‘ |
16. Prove that the set of all functions which are coninuous and nowhere differentiable on [0, 1] is a set of the second

category in the space C10, 1]. .
17. Prove that from any infinite open cover of a separable metric space one can extract a countable open cover.
18. Prove that a separable metric space is compact if from every countable open cover, one can extract a finite open

cover,
19. Let 4 =N x N, and set

Fiis {(x,y):x,y€R,and [x[>m,|y|>n}.




Show that {F{,.)} has the finite intersection property, and further show that N {F,, .} = ¢.

20. Show that a metric space X is compact if and only if every real-valued continuous function on X ig
21. Let X = {x:0<d(0,x) <1, and x € R?}, where 0 = (0, 0), and d is usual metric. Show that X is clggeg
bounded, but not compact. Also show that X is not totally bounded. ang

uﬂn AN 39 & ExKS
» 6. CONNECTEDNESS

So far, we have discussed the three important C’s in metric spaces viz. the continuity, completeneg
compactness. The fourth important C which plays the vital role as regards the separation or cmne;tﬁ
between the subsets of a metric space in connectedness. The word connected means not separated g Jo,
us first define what we mean by separated sets.
Separated Sets
Two sets 4 and B in a metric space (X, d) are said to be separated if neither has a point in common wig,
the closure of the other.
ie., ANnB=¢,and AnB=¢

Note that if 4 and B are separated then they are disjoint since

ANBc ANB=9¢,
but two disjoint sets are not necessarily spearated. For example if,
A={x:1-00<x<0},B={x:0<x <o},

then 4 and B are disjoint but not separated. Clearly subsets of two separated sets are themselves
separated. Two closed sets (open sets) are separated if and only if they are disjoint.

If the union of two separated sets is a closed set (open set) then the sets are themselves closed

(open). For if A and B are two separated sets such that the 4 U B is closed, then
A=AN(AUB)=4AN(AUB)=AN(AUB)=AU¢=A4

Definition. A subset A of a metric space (X, d) is said to be connected if it cannot be expressed as the
union of two non-empty separated sets. If 4 is not connected, then it is said to be disconnected.

Any discrete space with more than one point is disconnected. Equivalent definitions for connectedness
are contained in the following theorem.

Theorem 34. Let Y be a subset of a metric space (X, d), then the following are equivalent :
(7)) Y is connected.
(i) Y cannot be expressed as disjoint union of two non-empty closed sets in Y.
(iii) ¢ and Y are the only sets which are both open and closed in Y.
(i) = (i). If possible, let Y = 4 U B, where A and B are closedin Yand A # ¢, B# ¢, ANB=¢
We claim that 4 and B are separated.
ie., ANnB=¢, and AN B=¢.
Clearly YN A=A, and YN B =B (- Aand B are closed in Y).
- ANB=(ANY)NB=An(YNnB)=4NnB.
If possible, let A N B # ¢, therefore there exists

fo'




YeEANnB

= | - ye€d and ye B
Butsince A=Y N 4
yevyY

No.w y € B, y€Y implies every neighbourhood of y in Y intersects B and so ye B (. B is
closed in Y).

Thus y € 4 ‘:‘ B, implies 4 N B # ¢, which is a contradiction.
Hence AN B = ¢.

Thus Y is the union of two non-empty separated sets. This implies that ¥ is disconnected, which is
a contradiction to the given hypothesis. Hence (i) is true.

(i) = (i). If possible, let Y be disconnected, then Y = 4 U B, where 4 and B are two non-empty
subsets of Y such that

Aﬁ§=2ﬂ8=¢

Clearly ANB=¢ (+ AnNBS AN B =9¢)
Now YNA=(AUB) NA=(ANA)UBNnA)=4Aud=4
[« BN A=¢]

Therefore A, being the intersection of Y and the closed set 4, is closed in Y.

Similarly, ¥ N B = B implies Bis closed in Y.

This gives that ¥ is a disjoint union of two non-empty closed sets 4 and B in Y, which is a contradiction
to (ii). Hence Y is connected.
(i) = (iii). If possible, let there exist a non-empty proper subset 4 of Y which is both open and closed
in Y. Then its complement B = Y—AinYisbothclosedandopeninYand Y=AUB, A#¢, B+ 9,
A N B = ¢; which contradicts (ii). Hence (iii) must be true.

(iii) = (ii). Obvious.

et Y of a metric space X is disconnected if and only if Y < G, U G,, where
20, YNNG, 29, GGNG NY=¢.

empty proper subset 4 of ¥ which is both open and
on-empty proper subset of Y which is both

Theorem 35. A subs
G, and G, are open sets in X such that Y N G,

Let ¥ be disconnected, then there exists a non-empt
closed in Y. This implies that its complement B=Y-Aisan

closed and open in Y.

Since 4 and B are open in ¥, therefore,
A=G nY, B=G,nY

there exists two open sets G, and G, in Y such that




Also G NG)NY=(GNNN(GNYN)=ANB=¢

Clearly .
GNY#$,G NY#9 [+ A%, Bxy,
Conversely, if there exists two open subsets G, and G, of X such that
Yc G uG,

and (G,r\Gz)nY=¢,Gle¢¢,G2--mY¢¢

Then Y=}’r'\(Gl0G2)=(Y0G1)u(Ym(;2)

Let A=G NnY, and B=G,NnY,

then 4 and B are open in Y.

So that Y=40UB.

Moreover AﬁB=(G,ﬁY)m(szY)=¢

Thus 4 = Y — B is both open and closed in Y. Clearly 4 is a non-emply proper subget of ¥
(v A4#¢,B=¢)

Hence Y is disconnected.

*Theorem 36. [er 4 be a connected subse

t of a metric space X, and let B be a subset of X such that
ACBC A, thenBis also connected.

If possible, B be disconnected, then there exist twWo open subsets G and H of X such that
| BgGuH.GnHmB=¢,Gan:¢, and HN B # ¢
NowA;BimpliesthatAgGuH,andGch_;B":A" -
ie., GNHNA=¢ )
Also G A # ¢, for it not, then 4 ¢ G°.
This implies that 4 — G¢ [ G° is closed being complement of open set G]

Léi; . Bc G*

or B N G = ¢, which is not possible.



Similarly, HN A # ¢

ws that {G N : . )
It follo {GNAHN 4} isa disconnection of 4 which is a contradiction, since 4 is

Hence B must be connected. In particular, 7 s also connected

Theorem 37.  Continuous image of a connected set is connected.
Let f: X — Y be a continuous function from a metric space X to a metric space Y. Let 4 be a
connected subset of X If 4 = ¢, then there is nothing to prove. Let 4 # ¢. We have to show that f4)

is connected. If possible, let f4) be disconnected. Then ¥ contains open subsets G,, G, which intersect
fi4) and are such that

S(A) <SG UG, and G, NG, N f(4)=¢

This implies
Ac (G UG)=fG)uU f(G,) and
GG A f(A)=1"(9)=¢
or Ac fG) UG and fUG) N fNG)NA=9

¢ )= 4)
But ™ (G)) and f K (G,) are both open in X, being inverse images of open sets G, and G, under
the continuous function f.
Also UGN A= G) N (@)= G N f(4)#¢
[ G f(4)#9¢]

Similarly fG)NA#¢
This implies that 4 is disconnected, which is a contradiction.
Hence f(4) must be connected.
Theorem 38. The union of two connected sets, having non-empty intersection, is connected.

Let A and B be any two connected subsets of a metric space X, such that
AN B#¢.

Let Y = A U B. To show Y is connected, let D be any non-empty subset of Y which is both oper.
and closed in Y. Then D c Y = A U B implies D must intersect 4 or B or both. Suppose it intersects 4,
ie, DN A#¢. Then DN A is a non-empty subset of 4 which is both open and closed in A.
Therefore DN A = A, ie., Ac D, since 4is connected. Now AN Bc DN B,and 4N B # ¢,
sothat D N B is a non-empty subset of B which is both open and closed in Bandso D N B = B, i.e..

B ¢ D, since B is connected.
Thus, Y=AuBcDUD=D

Hence, Y = D, It follows that Y is connected.




of connected sets, with non-empty intersection, is connecteg

Theorem 39. An arbitrary union ,
of connected sets having non-empty intersection i.e., r;\ A, #¢. Tﬂking

Let {4,} be a family . .
the proof follows by the same argument as given in the above theorem. 5

Y=\ 4.,
a
If {4,} is a sequence of connected subsets of a metric space X, each of which intersects ity

Ex. 1.
successor, i.e., A, N Ap1 ¢, VneN, then show that ( 4, is connected.
" b= 3 n "=l
[Hint: Taking B, = A, U 4, Y As... U A4,, we have

oo

;;1 B, o A, and v B, = Y A4,.]
n= n= n=

Ex. 2. Show that the union of any non-empty—family {A4,} of connected subsets of a metric space

X, each pair of which intersects, is connected.
[Hint. Fix @, taking B, = Aa, Y 4, for each @, we have

QBa 2 Ag, and {LxJBa =§JA,,-]
Example 45. Discuss the connectedness of the following subsets of the Euclidean space R?.
() D={(x, y):x#0, and y =sinl/x}

(ii) E={(x,y):x=0,and —1<sy<l}juD
(i) DcR?, where D={(x,y):x#0, and y = sin l/x}

Let A= {(x,y):x>0,and y = sin 1/x}, and
B={(x,y):x<0,and y=sinl/x}

D=AUB, and ANnB=¢

A=Dn {x,y): x>0}, and
B=Dn {x,y):x<0}
The sets {(x, y) : x> 0} and {(x, y) : x < 0} are pairwise disjoint open subsets in RZ.

Then

Since

Obviously 4 and B are open in D and they are also non-empty, i.e.,
A#¢, B¢
Therefore, {4, B} is disconnection of D.
Hence, D is a disconnected subset of R2.
(ii) Next, we have E < R?, given by
E=Du{0,y):-1<y<1}
Let F={0,y):-1sy<1}
then E=40BOF .

From the graph of y = sin 1/x, it is easy to verify that
A=AUF, and B=BUF




_ E=4uB
We now define a function f : ]0, eo[ — R2 by

7 J(x) = (x, sin 1/x)
s MFﬂonflS continuolls and the set 4, being the continuous image of the connected set
10, e[, 1s connected. So A is connected. Similarly the function g :]— e, 0[ = R? defined
by g(x) = (. sin 1/x) is continuous. By the same argument B is connec,ted.
Hence, E 1s a connected subset of R2.

Theorem 40. . A non-empty subset X of R (with usual metric) is connected if and only if X is an
interval or a singleton.

Let X be a non-empty connected subset of R containing at least two elements. If possible, let X be
not an interval, then there exists @, b, c € R such that

a<c<babeX butceX.

Then G, =]— o, c[ and G, = ]c, = are two disjoint open sets in R which intersect X (since

ae G, N X and b e G, N X) such that
X=(XnG)U(IXNG,)cG UG,

This shows that X is disconnected, which is a contradiction. Hence X must be an interval.

Conversely, if X is a singleton set, then there is nothing to prove. If possible, let X be disconnected,
then there exist two open subsets G, and G, of R such that

XcGuUG,GNGNX=0GNnX#9,G, NX#9¢.

Let a € G, N X, be G, N X. Assume that a < b. The set [a, b] N G; is non-empty and bounded
above (by b) and so it has a supremum say &. Clearly a < £ < b. Now & ¢ G,, forif it were in the open
set G,, then there exist £ > 0 such that

-eé+elcG

This implies £ — ¢ is an upper bound of [a, 5] N G, which contradicts the choice of £ as the least
upper bound.

Similarly £ ¢ G,, for if & € Gy, G, being open, then there exists § > 0 such that

E-6,&E+0[<Gy.
Now we have £ < b and 1§, [N G, # ¢ SO that £ cannot be an upper bound of [a, b] N G|,

which contradicts the choice of £.
Hence g, be X,a<&é<b and ¢ X, it follows that X is not an interval.

Corollary. The real line R is connected.
Since R is an interval so it is connected by the above theorem.

Aliter. Let, if possible R be disconnected. Then there exist two non-empty disjoint closed sets A a:l

B in R such that R = 4 U B.




Let a, € A and b, € B, a, # b, so either a; <b, or a;, > b,. Without loss of generality We mg
y

a, +b

assume a, < b,. Let I, =[a,, b,]. The mid-point of [a;, b;] being a point of R belongs to it
r

o +h by | and name i
2 ameit I, =[“z.bz];

to B (but not to both). In case it belongs to A4, take the interval [
L+ b
2
Now bisecting /, as before and continuing the process indefinitely we get a sequence { LY={la.b I
or closed intervals such that o

Lol b2

. P a
otherwise we call the interval [a], ] as I, =[a,, b,], where I, c I, and b, - g, =-l-(b —a)
A

with the property that a, € A,b, € B,V neN; and I(],) =# (b, — a,) which tends to zero as ;i -

tends to infinity.
Therefore by Cantor’s intersection theorem,
n 1, =1
Le, cel, VneN

Clearly c is a limit point of both 4 and B, for if € > 0 is any arbitrary real number then there exists

a positive integer m, such that
I,cle—€ec+e, Vn2m,

This implies Jc — €, ¢ + €[ contains infinite number of points dmg, dmg+1--- of 4 as well as infinite
number of points Zmg: bmg+1,--- of B. So c is a limit point of both 4 and B. But 4 and B are closed
subsets of R. Therefore, ¢ belongs to both A and B, which is a contradiction to the fact that 4 N B = 9.
Hence R is connected.

Definition. A real-valued function is said to have an intermediate value property if it assumes every
value between any two of its values.

Theorem 41. Generalized Intermediate-Value Theorem. Every real-valued continuous function f
defined on a connected metric space X has the intermediate-value property.

Continuity of the function f: X — R and connectedness of X implies f{X) is a connected subset
of R. Then from Theorem 40, 1 (X) is either a singleton or an interval.

If f(X) is singleton then there is nothing to prove. Let f{X) be an interval.

Let f(x) # f(»). x, y € X be any two values of /(X). Then either f(x)< f(y)or f(x)> o
Without loss of generality we may assume that f(x) < SO).
Let A be any real number lying between f(x) and /()

fx) <4 <)

ie.,

) i an intervall
Then, 4 € f(X) [+ £(X) isanintervall |
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o, A = f (a), for some x € X.

; l,Hence fhas the intermediate value property.
Corollary (Inter media'te-value theorem). If a real-valued function f is continuous on the closed interval
@, b} Then f has the intermediate value property, i.e., f assumes every value between f(a) and f (b).

, This follows from the above theorem. Since the interval [a, 4] is a connected subset of R.

42. A metric space X is connected if and only if every real-valued continuous function [fhas
the intermediate value property.

The necessary part has been proved in the above theorem.

For the sufficient part we shall show that if X'is not connected then there exists a real-valued continuous
qunction which does not possess the Intermediate value property. Let X be disconnected, then there exist
two disjoint non-empty Open sets G and H in X such that

X=GUH

Theorem

The function f: X — R defined by
0, ifxeG

f(x)={1, if xe H

does not take the intermediate value  at any point of X.
ue property. However, f is continuous. Since the range
a complete collection of open subsets of £ (X) is given

e sets are ¢, X, G, H respectively, all of

So f does not possess the intermediate val
fiX) of fis the discrete space {0, 1}, Therefore,
by ¢, {0, 1}, {0}, {1} By definition of /'the inverse image of thes

which are open in X.

Corollary. A metric sp
onto the discrete metric space {0, 1}.
This follows from above theorem and the fact that the

point is always disconnected.

6.1 Components of a Metric Space

Definition. A subset A of a metric space X is said to be a component of X if it is the maximal
connected subset of X, i.e., if 4 is connected but not contained properly in any larger connected subset
of X.

Thus if X is connected, the
singleton sets are connected. Moreover, in a discret
subsets of X, since a subset 4 of X containing more
the components of X are singletons.

ace X is disconnected if and only if there exists a continuous function from X

discrete metric space with more than one

n X is the only component of itself. Components always exist, since
e metric space X singletons are the only connected
than one element is obviously disconnected and so

Properties:

() Components are closed sets
Let X be any metric space and A be its component. By definition, 4 is a maximal connected subset of X.

TSU.I?poseA is not closed, then A# A ie, AC A. Now A, being the closure of the connected set 4
lsl itself connected which properly contains 4, this contradicts the maximality of 4. Hence, 4 must bc
closed.




(i) Components need not be open sets
Consider the metric space of rationals (Q, d) with the usual metric. The components of Q are s,
which are not open in Q. Let Y be any subset of Q containing more than one element. Choose
Y with y, < y,, then there exists an irrational number ¢ such that n<é<y,
{]- o, &[, 1€, <[} is a disconnection of Y, and so Y is disconnected.

Hence, the only connected subsets of Q are singletons.

gletons

(iii) Components of a metric space are either identical or pairwise disjoint
Let A and B be any two'components of a metric space X. Then either 4 N B = ¢ or AnB 4 0
AN B = ¢, then there is nothing to prove. If 4 N B # ¢ then A U B is a connected subset of x Allso

AC AV B and BC AU B, the definition of components implies 4 U B = 4, and 4 B=B 44
hence 4 = B.

Theorem 43. Every connected subset of a metric space is contained in a component of X,

Let 4 be any connected subset of X. Consider the collection {4,} of all connected subsets of X
containing 4.

{4} # ¢, since A itself is a connected subset of X containing 4. Let Y =uU 4,.

Then Y is a connected subset of X containing 4, since each A, isa connectedasubset of X containing

A and r: Ay #¢ (Acn4,).

Moreover, Y is a maximal connected subset of X, forif ¥ — B, where B is a connected subset of X,
then Be {4,} (- AcY=AcB) andso Bcu A, =Y. Thus B = Y. This shows that Y is a
(1 4

maximal connected subset of X containing 4; and hence Y is the required component of X containing 4.
Also components are pairwise disjoint, therefore Y is the only component of X containing 4.

Corollary 1. Each element of a metric space X is contained in exactly one component.
This follows directly from the above theorem since each singleton is connected.

Corollary 2. A non-empty connected subset of a metric space X is a component, if it is both open and
closed.

Let A be a non-empty connected subset of X, which is both open and closed. Then by the above
theorem, 4 is contained in some component, say, B of X. To prove that 4 is a component of X, we shall

show that A = B. If possible let 4 # B, then 4 is a proper subset of B which is both open and closed in
B. This implies 4 = ¢ (- B being component, is connected), which is a contradiction. Hence A = B.

Ex. Show that the metric space if (R",d) where

d(x,y)=max|x =y | ¥=(n %, 5,)

y = (yh }’2. veey y,,) € Rn
is connected.

[Hint: Every non-empty proper subset of R” has non-empty boundary].

S



B.A/B.Sc. T.Y. Semester-V
DSEM-S, Section-A
Paper XII: Metric Spaces

No. of periods: 60

iJnit |

Unit II:

Unit III:

Reference Books:
I

2.

3.

4,
s,

Max. Marks: 50 Credits: 2

Definitions and examples:

Definition of Metric Space, Examples of Metric
Set.

Open and Closed sets:

Open and Closed Spheres, Neighbourhood of a Poi
Closed Sets, Subspaces, Closure of a Set.

Space, Diameter of a nonempty

nt, Open Sets, Limit Points,

Convergence and Completeness:

Definition, Cauchy Sequence, Cantor's Intersection Theorem, Baire's Category
Theorem.

Continuity and Unifo
Definitions, Example
Fixed Point Theorem

rm Continuity:
s, Theorems on Continuity and Uniform Continuity, Banach

Compactness:
Definitions and Theorems on Compactness, Heine-Borel Theorem, Compactness
and Finite Intersection Property,

Relative Compactness, €-Nets and Totally
Bounded Sets, Lebesgue Number for Covers.
Connectedness:

Separated Sets, Definition and Theorems on Connectedness.

S.C. Malik and Savita Arora, “Mathematical Analysis”,

New Edge
International (P) Limited Publisher, New Delhi (Fourth Edition).

Unit I : Chapter 19:- Art, 1,2,2.1,2.2, 2.3 (Theorem | only), 2.4, 2.5, 2.6, 2.7.

Unit II : Chapter 19:- Art. 3, 4 (Theorem 16 statement only), 4.1,

Unit I1I: Chapter 19:- Art. 5 (Theorem 2 1statement only), 5.1, 5.2(Theorems 26
to 33 Statements only) , Art. 6. (up to Theor em 39 and Example 45).

Somaslundqram' & Chaudhary
Pub. House New.Delhi.

R. Goldberg, “Methods of Real Analysis”, Oxford & IBH Ffub. Co.PVT Lud
Shantinarayan & M.D. Raisinghania, “Elements of Real Analysis™, S. Chand. Co.
Ltd.

E. T. Copson “Metric Spaces”, Cambridge University Press. Universal Book Co.
New Delhi.

T. M. Apostol “Mathematical Analysis™, Narosa Pub. House New Delhi.
T. M. Karade, “Lecturers on Analysis", Sonu Nilu Pub, Nagpur.

“A First Course in Mathematical Analysis", Narosa

2



