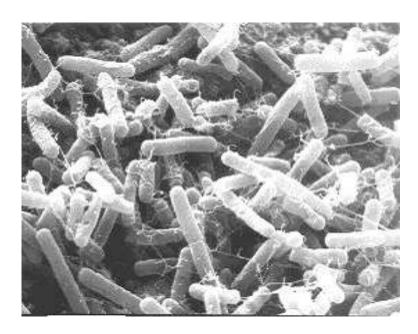
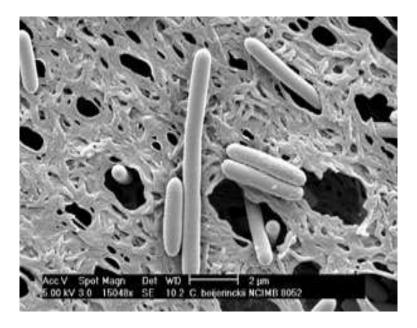
Acetone-Butanol fermentation

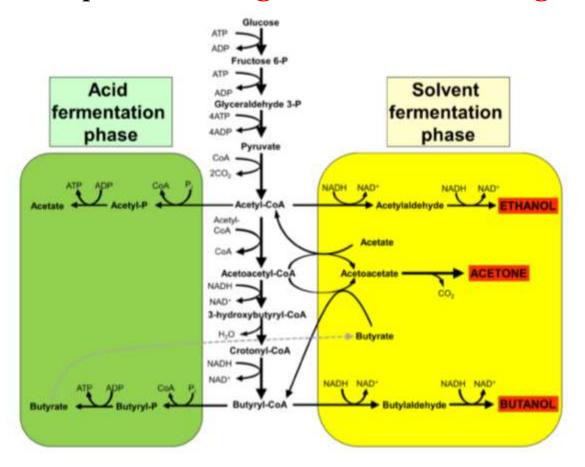
Noufal N S3 MSc Microbiology School of Biosciences M.G.University


- 1862 Pasteur discovered butanol fermentation in bacteria.
- 1911 Fernbach described several species of bacteria which conduct acetone-butanol-fermentation.
- 1916 acetone-butanol fermentation
 was developed by Chaim Weizmann
 using Clostridium acetobutylicum.


- Acetone: production of explosives &
- Butanol: making synthetic rubbers.

- In acetone-butanol fermentation, acetone and butanol are produced from glucose using strains of *Clostridia*, which are strictly anaerobic bacteria. Further, ethanol is also produced.
- The ABE fermentation produces solvents in a ratio of **3** parts acetone, **6** parts butanol to **1** part ethanol.
- Clostridium acetobutylicum is the most well-studied and widely used species, although Clostridium
 beijerinckii has also been used with good results.

- Used for commercial fermentation in Europe and America until the 1970s, currently only in China.
- An obligately anaerobic, Gram-positive and endospore- forming rod.
- Not pathogenic or toxigenic to humans, animals, or plants.



Clostridium acetobutylicum

Clostridium beijerinckii

• Metabolic pathways of A.B.E. fermentation comprise two characteristic phases: Acidogenesis and Solventogenenis.

This figure shows pathway of acetone—butanol—ethanol fermentation by clostridia.

Table 13.1 Acetone/butanol/ethanol fermentation of corn cobs, corn stalk and wood [Walton and Martin (1979)].

Culture	Substrate(s)	Time (h)	Yield (%)	Solvent Butanol	Composition Acetone	on (%) Ethanol
Clostridium acetobutylicum S ₂₅	Hydrolyzate of corncobs (7%)	SE	26-2	mm Sana	or solvening	
	Hydrolyzate of sawdust (7%)		22-2			
C. acetobutylicum 314	Hydrolyzate of corn cobs (40-60%, 3.7% total), molasses (40-60% sugar)	48-72	40	67.5		
Butyl culture	1 part hydrolyzate of corn stalks, 3 parts molasses	50-55	31–37			
	Pentoses (13.5%)		25.4	67	33	
	Hydrolyzates of wood and plants (8%)		35.5	62	32	6

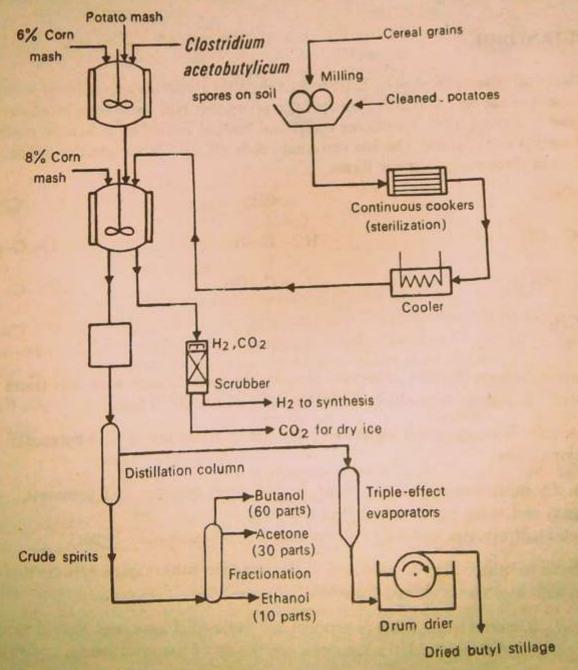
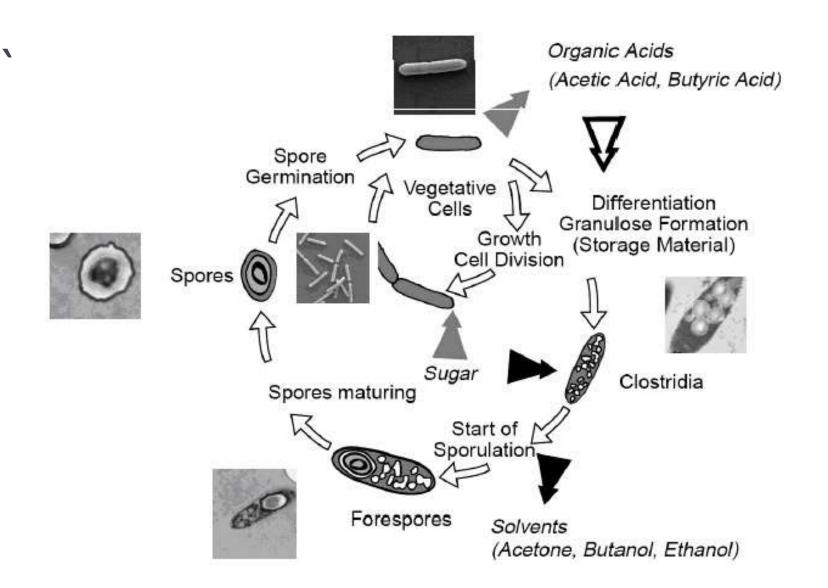
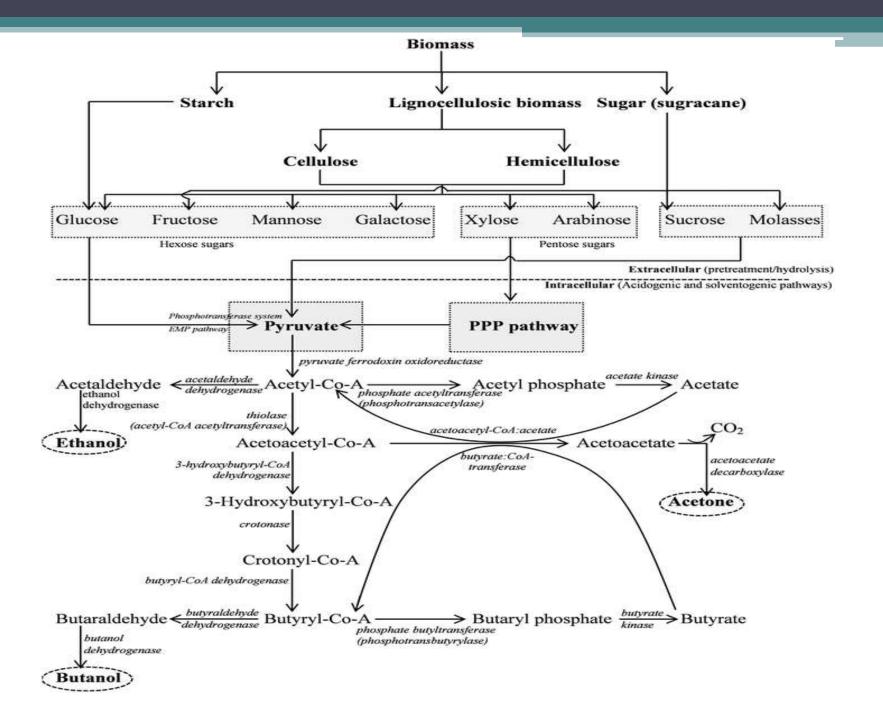


Fig. 13.4. Flow diagram of a typical acetone-butanol fermentation using starch products (Beesch, 1953).


Organism:


- **1.** *Clostridium acetobutylicum* 1st organism industrial production of acetone from starch.
- **2.** Clostridium saccharoacetobutylicum convert molasses into acetone & butanol.
 - submerged cultures
 - **Substrate**: sterile diluted molasses or cooked corn meal.
 - **pH**: 7.2
 - **Type of fermentation**: anaerobic
 - **By-products**: CO₂(preparation of dry ice) & H (fuel)
 - **Product recovery**: fractional distillation

- Large bioreactors 200000-1000000 Lr
- CO₂ was bubbled through the culture to ensure that O₂ was excluded.
- Fermentation biphasic Acidogenesis

Solventogenenis

- Acidogenesis forming acetate, butyrate, hydrogen, and CO₂.
- Solventogenesis forming butanol, acetone, and ethanol.
- After 40-60 hrs 12-20gm/L of solvent(6B:3A:E1).
- The solvents was removed by distillation.
- The remaining microbial dried solids were used as high nutrient animal feed.

uses:

- **Butanol** is a valuable solvent for the production of lacquer (used to prepare the finish of automobiles), latex, enamels....
- Used as biofuel(it has similar physical properties to gasoline).
- Used as an additive to plastics to keep them flexible.
- Used as a solvent in the manufacture of antibiotics, vitamins, and hormones.
- Acetone is important in making cordite.

