
UNIT V: 
FILE SYSTEM 



CONTENTS 

• File Concept 

• Access Methods 

• Directory Structure 

• File-System Mounting 

• File Sharing 

• Protection 

• File-System Structure 



FILE CONCEPT 

File Concept –  

Computers can store information on various storage media, such as magnetic disks, 

magnetic tapes, and optical disks. These storage devices are usually nonvolatile.  

A file is a named collection of related information that is recorded on secondary 

storage. Many different types of information may be stored in a file – source 

programs, object programs, numeric data, text, graphic images, sound recordings, and 

so on.  

a) File Attributes –  

A file is named, for the useful of its human users, and is referred to by its name. A 

name is usually a string of characters, such as sample.txt. Some systems differentiate 

between uppercase and lowercase characters in names, whereas other systems do not.  

A file‘s attributes vary from one operating system to another but typically consist of 

these:  



Name – The symbolic file name of the file.  

Identifier – It is a unique number that identifies the file within the file system.  

Type – This information is needed for systems that support different types of 

files.  

Location – Location of the file on the device.  

Size – The current size of the file.  

Protection – Access control information determines who can do reading, writing 

or both.  

Time and date – This information may be kept for creation and last 

modification.  

 

FILE CONCEPT 



b) File Operations –  

The operating system can provide system calls to create, write, read, and delete 

files.  

 Creating a file – Two steps are necessary to create a file. First, space in the 

file system must be found for the file. Second, an entry for the new file must be 

made in the directory.  

 Writing a file – To write a file, we make a system call specifying both the name 

of the file and the information to be written to the file.  

 Reading a file – To read from a file, we use a system call that specifies the 

name of the file and where (in memory) the next block of the file should be put.  

 Deleting a file – To delete a file, we search the directory for the named file. 

Having found the associated directory entry, we release all file space, so that it 

can be reused by other files, and erase the directory entry.  

 

FILE CONCEPT 



c) File Types –  

The name is split into two parts – a name and an extension, usually 

separated by a period character.  

Most operating systems allow users to specify file names as a sequence of 

characters followed by a period and terminated by an extension of 

additional characters. File name examples include resume.doc, 

server.java, and sample.txt.   

The system uses the extension to indicate the type of the file. Only a file 

with a .com, .exe, or .bat extension can be executed.  

The .com and .exe files are two forms of binary executable files, whereas 

a .bat file is a batch file containing, in ASCII format, commands to the 

operating system. 

 

FILE CONCEPT 



ACCESS METHODS 

• Files store information. When it is used, this information must be 

accessed and read into computer memory. The information in the 

file can be accessed in several ways.  

• Some systems provide only one access method for files. Other 

systems, support many access methods.  

a) Sequential Access –  

b) Direct Access –  

 



• The simplest access method is sequential access. Information in the file is 

processed in order, one record after the other. For example, editors and 

compilers usually access files in this fashion.  

• A read operation – read next – reads the next portion of the file and 

automatically advances a file pointer, which tracks the I/O location. Similarly, 

the write operation - write next – appends to the end of the file.  

• Such a file can be reset to the beginning; and on some systems, a program 

may be able to skip forward or backward ‗n‘ records.   

• Sequential access file, which is shown in following figure, is based on a tape 

model of a file and works as well on sequential access devices as it does on 

random access ones.  

 

SEQUENTIAL ACCESS –  



SEQUENTIAL ACCESS –  



• Another method is direct access (or relative access). A file is made up of fixed 

length logical records that allow programs to read and write records rapidly 

in no particular order. The direct access method is based on a disk model of a 

file, since disks allow random access to any file block.  

• We may read block 14, then read block 53, and then write block 7. There 

are no restrictions on the order of reading or writing for a direct access file. 

Direct access files are of great use for immediate access to large amounts of 

information.  

• For the direct access method, the file operations must be modified to include 

the block number as a parameter. Thus, we have read ‗n‘, where ‗n‘ is the 

block number, rather than read next, and write ‗n‘ rather than write next.  

• Not all operating systems support both sequential and direct access for files. 

Some systems allow only sequential file access; others allow only direct access.   

 

B) DIRECT ACCESS –  



• Figure – Physical 

 Block Storage  

 

ACCESS METHODS 



• Suppose, system wants to access record number 5 from the 

SAMPLE file. System identifies associated block number for that 

record using following formulas and then directly accessed the 

block and then accesses required record,    

•   

• Logical byte address = (Record Number - 1) * Record Length  

•           = (5 - 1) * 50  

•           = 200    

 

ACCESS METHODS 



Physical Block Number = Logical Byte Address /   

Physical Block Size +  

Address of First Physical Block  

                      

E.g. - Physical Block Number = 200 / 100 + 2  

                           = 2 + 2  

                          = 4  

  

 

ACCESS METHODS 



• This is the block (4) containing record 5 of file SAMPLE. There is no 

need to search in sequential order like 2, 3, and then 4. So, 

seeking time for direct access method is less as compared to the 

sequential access method   

 

ACCESS METHODS 



C) OTHER ACCESS METHODS –  
 

• If we want to read specific section in book, we would not begin 

from page 1 & read every page until we across this section. 

Rather, we would search this section in the table of contents at the 

beginning of the book called as, ‗INDEX‘. Index file use same 

principle.  

• Following figure shows, in indexed access method, there are two 

files for every data file i.e. MASTER file & INDEX file. MASTER file 

contains actual records in a file & INDEX file contains the index key 

& disk address of each record in the MASTER file.  

 



C) OTHER ACCESS METHODS –  
 

• Records in the MASTER file can be stored in random sequence, but 

index keys in the index file are stored in sorted sequence on index 

key value.  

 

Table - Index File                                   Table - Master File  

  



C) OTHER ACCESS METHODS –  
 

• For processing a search request for a particular record, the computer 

first searches the index file to determine physical location of the record 

and then accesses the corresponding record from the data file.  

• For example, to locate a student record who‘s RN (ROLL NUMBER) is 4. 

The computer searches index file first for this STUDENT – RN key & 

obtains the corresponding address value 1002. It then directly accesses 

the record stored at address location 1002 in the MASTER file.  

•   



C) OTHER ACCESS METHODS –  
 

Advantage –  

1) Records are accessed in very quickly.  

  

Disadvantages –   

It requires extra memory space to store index file.   

If an index fails to operate, the whole system fails.  

 



DIRECTORY STRUCTURE –  

• A disk can be used in its entirety for a file system. A file  

system can be created on each of the parts of the disk.   

• Figure – A typical file system  

organization  

• Each volume that contains a file system must also contain 

information about the files in the system. This information is kept in 

entries in a device directory or volume table of contents. The 

device directory records information – such as name, location, size, 

and type for all files on that volume. 



DIRECTORY STRUCTURE 

•When considering a particular directory structure, we need to 

keep in mind the operations that are to be performed on a 

directory:  

• Search for a file – To find a particular file in the directory.  

• Create a file – After a new file is created, its entry will be added to the 

directory.  

• Delete a file – Remove the entry of deleted file from the directory.  

• List a directory – To see the list of available files.  

• Rename a file – We must be able to change the name as per 

requirement.  

 



A) SINGLE LEVEL DIRECTORY –  

• The simplest directory structure is the single level directory. All files 

are contained in the same directory, which is easy to support and 

understand as shown in following figure,  

Directory 

 

Files 

CAT BO A 

Figure – Single level directory  



A) SINGLE LEVEL DIRECTORY –  

• A single level directory has significant limitations, however, when 

the number of files increases or when the system has more than one 

user. Since all files are in the same directory, they must have unique 

names.  

• Even a single user on a single level directory may find it difficult to 

remember the names of all the files as the number of files 

increases.  

•   

 



B) TWO LEVEL DIRECTORY –  

• A single level directory often leads to confusion of file names among 

different users. The standard solution is to create a separate directory 

for each user.  

• In the two level directory structures, each user has own user file directory 

(UFD). The UFDs have similar structures, but each lists only the files of a 

single user.  

•When a user logs in, the system‘s master file directory (MFD) is 

searched. The MFD is indexed by user name or account number, and 

each entry points to the UFD for that user as shown in following figure,  

 



B) TWO LEVEL DIRECTORY –  

 

 

 

 

 

 

 

• Figure – Two level directory structure  

•   

 



B) TWO LEVEL DIRECTORY –  

•When a user refers to a particular file, only his own UFD is 

searched. Thus, different users may have files with the same name. 

To create a file for a user, the operating system searches only that 

user‘s UFD to check whether another file of that name exists. To 

delete a file, the operating system confines its search to the local 

UFD.  

• A two level directory can be thought of as a tree, of height 2. The 

root of the tree is the MFD. Its direct descendants are the UFDs. 

The descendants of the UFDs are the files themselves.  



C) TREE STRUCTURED DIRECTORIES 

• Tree structured directories allows users to create their own 

subdirectories and to organize their files accordingly. A tree is the 

most common directory structure.   

• The tree has a root directory, and every file in the system has a 

unique path name. A directory (or subdirectory) contains a set of files 

or subdirectories. A directory is simply another file, but it is treated in 

a special way.  

• All directories have the same internal format. One bit in each 

directory entry defines the entry as a file (0) or as a subdirectory (1).  

 



C) TREE STRUCTURED DIRECTORIES 

Figure – Tree structured directory structure  



C) TREE STRUCTURED DIRECTORIES 

• For example, in the tree structured file system of above figure, the 

relative path is p/list and the absolute path is programs/p/list for same 

file i.e. list file.  

• If the directory to be deleted is not empty then one of two approaches 

can be taken. Some systems, such as MS-DOS, will not delete a 

directory unless it is empty. Thus, to delete a directory, the user must first 

delete all the files in that directory.  

• An alternative approach, such as that taken by the UNIX is to provide 

an option: When a request is made to delete a directory that entire 

directory‘s files and sub directories are also to be deleted.  

 



D) ACYCLIC GRAPH DIRECTORIES –  

• A tree structure prohibits the sharing of files or directories. An acyclic 

graph – that is, a graph with no cycles – allows directories to share 

subdirectories and files as shown in following figure.   

• The common subdirectory should be shared. A shared directory or file will 

exist in the file system in two (or more) places at once.  

• It is important to note that a shared file is not the same as two copies of the 

file. With two copies, each programmer can view the original copy. But if 

one programmer changes the file, the changes will not appear in the 

other‘s copy.  

•With a shared file, only one actual file exists, so any changes made by one 

person are immediately visible to the other.  

 

 



D) ACYCLIC GRAPH DIRECTORIES –  

Figure – Acyclic graph directory structure  



D) ACYCLIC GRAPH DIRECTORIES –  

• Sharing is particularly important for subdirectories; a new file 

created by one person will automatically appear in all the shared 

subdirectories. An acyclic graph directory structure is more flexible 

than is a simple tree structure, but it is also more complex.  

 



FILE-SYSTEM MOUNTING 

• Just as a file must be opened before it is used, a file system must be 

mounted before it can be available to processes on the system.  

• More specifically, the directory structure may be built out of multiple 

volumes, which must be mounted to make them available within the file-

system name space. 

•  The mount procedure is straightforward. The operating system is given 

the name of the device and the mount point—the location within the file 

structure where the file system is to be attached.  

• Some operating systems require that a file system type be provided, 

while others inspect the structures of the device and determine the type 

of file system.  



FILE-SYSTEM MOUNTING 

• Typically, a mount point is an empty directory. For instance, on a UNIX system, 

a file system containing a user‘s home directories might be mounted as /home; 

then, to access the directory structure within that file system, we could precede 

the directory names with /home, as in /home/jane. Mounting that file system 

under /users would result in the path name /users/jane, which we could use to 

reach the same directory.  

• Next, the operating system verifies that the device contains a valid file system. 

It does so by asking the device driver to read the device directory and 

verifying that the directory has the expected format. 

•  Finally, the operating system notes in its directory structure that a file system 

is mounted at the specified mount point. This scheme enables the operating 

system to traverse its directory structure, switching among file systems, and 

even file systems of varying types, as appropriate.  

 



FILE-SYSTEM MOUNTING 

users 

/ 

bill fred 

help 

sue jane 

prog 
doc 

(a)                                                                                                                   (b) 

 

 Figure  File system. (a) Existing system. (b) Unmounted volume. 

  



FILE-SYSTEM MOUNTING 

• To illustrate file mounting, consider the file system depicted in 

above Figure  where the triangles represent subtrees of directories 

that are of interest.  

• Figure (a) shows an existing file system, while Figure (b) shows an 

unmounted volume residing on /device/dsk. At this point, only the 

files on the existing file system can be accessed.  

 



FILE-SYSTEM MOUNTING 

•  The Microsoft Windows family of operating systems maintains an 

extended two-level directory structure, with devices and volumes 

assigned drive letters. Volumes have a general graph directory 

structure associated with the drive letter. The path to a specific file 

takes the form of drive-letter:\path\to\file. 

• The more recent versions of Windows allow a file system to be 

mounted anywhere in the directory tree, just as UNIX does. 

Windows operating systems automatically discover all devices and 

mount all located file systems at boot time.  



FILE SHARING 

• Such file sharing is very desirable for users who want to collaborate 

and to reduce the effort required to achieve a computing goal. 

Therefore, user-oriented operating systems must accommodate the 

need to share files in spite of the inherent difficulties 

•Multiple Users 

• Remote File Systems  



MULTIPLE USERS 

•When an operating system accommodates multiple users, the issues 

of file sharing, file naming, and file protection become preeminent. 

Given a directory structure that allows files to be shared by users, 

the system must mediate the file sharing. The system can either allow 

a user to access the files of other users by default or require that a 

user specifically grant access to the files. 

 



REMOTE FILE SYSTEMS  

• Networking allows the sharing of resources spread across a campus or 

even around the world. One obvious resource to share is data in the 

form of files. 

• Through the evolution of network and file technology, remote file-

sharing methods have changed.  

• The first implemented method involves manually transferring files 

between machines via programs like ftp.  

• The second major method uses a distributed file system (DFS) in which 

remote directories are visible from a local machine. In some ways, the 

third method, the WorldWide Web, is a reversion to the first. 



REMOTE FILE SYSTEMS 

• A browser is needed to gain access to the remote files, and 

separate operations (essentially a wrapper for ftp) are used 

  to transfer files. 

• ftp is used for both anonymous and authenticated access. 

Anonymous access allows a user to transfer files without having 

an account on the remote system. 



PROTECTION 

•File owner/creator should be able to control: 

o what can be done 

oby whom 

•Types of access  
• Read  

• Write  

• Execute  

• Append  

• Delete  

• List 



PROTECTION 

•When information is stored in a computer system, we want to keep 

it safe from physical damage and improper access 

• Reliability is generally provided by duplicate copies of files. Many 

computers have systems programs that automatically copy disk 

files to tape at regular intervals to maintain a copy should a file 

system be accidentally destroyed. 

• File systems can be damaged by hardware problems such as 

errors in reading or writing, power surges or failures, head crashes, 

dirt, temperature extremes, and vandalism. 



PROTECTION 

• Files may be deleted accidentally. Bugs in the file-system software 

can also cause file contents to be lost 

• Protection can be provided in many ways. For a single-user laptop 

system, we might provide protection by locking the computer in a 

desk drawer or file cabinet. In a larger multiuser system, however, 

other mechanisms are needed. 



PROTECTION 

•Types of Access 

• The need to protect files is a direct result of the ability to 

access files. Systems that do not permit access to the files of 

other users do not need protection. Thus, we could provide 

complete protection by prohibiting access 

• Access is permitted or denied depending on several factors, 

one of which is the type of access requested. Several different 

types of operations may be controlled: 



PROTECTION 

• Read. Read from the file. 

•Write.Write or rewrite the file. 

• Execute. Load the file into memory and execute it. 

•Append.Write new information at the end of the file. 

• Delete. Delete the file and free its space for possible reuse. 

• List. List the name and attributes of the file. 



PROTECTION 

• Access Control: 

• Access-control list (ACL) specifying user names and the types of access 

allowed for each user. When a user requests access to a particular file, the 

operating system checks the access list associated with that file. If that user is 

listed for the requested access, the access is allowed. Otherwise, a protection 

violation occurs, and the user job is denied access to the file. 

• many systems recognize three classifications of users in connection with each 

file: 

• Owner. The user who created the file is the owner. 

• Group. A set of users who are sharing the file and need similar access is a group, or work group. 

• Universe. All other users in the system constitute the universe. 



PROTECTION 

• R- Read, W- Write, X- Execute, d- Directory 



PROTECTION 



FILE-SYSTEM STRUCTURE 

• Disks provide most of the secondary storage on which file systems are 

maintained. Two characteristics make them convenient for this purpose: 

•  1. A disk can be rewritten in place; it is possible to read a block from 

the disk, modify the block, and write it back into the same place. 

•  2. A disk can access directly any block of information it contains. Thus, it 

is simple to access any file either sequentially or randomly, and 

switching from one file to another requires only moving the read–write 

heads and waiting for the disk to rotate.  

• To improve I/O efficiency, I/O transfers between memory and disk are 

performed in units of blocks. Each block has one or more sectors. 

Depending on the disk drive, sector size varies from 32 bytes to 4,096 

bytes; the usual size is 512 bytes 



FILE-SYSTEM STRUCTURE 

• File systems provide efficient and convenient access to the disk by allowing 

data to be stored, located, and retrieved easily.  

• A file system poses two quite different design problems. The first problem is 

defining how the file system should look to the user. This task involves 

defining a file and its attributes, the operations allowed on a file, and the 

directory structure for organizing files. The second problem is creating 

algorithms and data structures to map the logical file system onto the 

physical secondary-storage devices. 

•  The file system itself is generally composed of many different levels. The 

structure shown in Figure 12.1 is an example of a layered design. Each level 

in the design uses the features of lower levels to create new features for use 

by higher levels.  

 



FILE-SYSTEM STRUCTURE 

APPLICATION PROGRAMS 

 
 

LOGICAL FILE SYSTEM 

 

 

FILE-ORGANIZATION MODULE 

 

 

BASIC FILE SYSTEM 

 

 

I/O CONTROL 

 

 

DEVICES 

                                               

FIGURE: LAYERED FILE SYSTEM 



FILE-SYSTEM STRUCTURE 

• The I/O control level consists of device drivers and interrupt 

handlers to transfer information between the main memory and the 

disk system. A device driver can be thought of as a translator. Its 

input consists of highlevel commands such as ―retrieve block 123.‖ 

Its output consists of low-level, hardware-specific instructions that 

are used by the hardware controller, which interfaces the I/O 

device to the rest of the system. The device driver usually writes 

specific bit patterns to special locations in the I/O controller‘s 

memory to tell the controller which device location to act on and 

what actions to take. 



• The basic file system needs only to issue generic commands to the 

appropriate device driver to read and write physical blocks on the disk. 

Each physical block is identified by its numeric disk address (for 

example, drive 1, cylinder 73, track 2, sector 10). This layer also 

manages the memory buffers and caches that hold various file-system, 

directory, and data blocks. A block in the buffer is allocated before the 

transfer of a disk block can occur. When the buffer is full, the buffer 

manager must find more buffer memory or freeup buffer space to allow 

a requested I/O to complete. Caches are used to hold frequently used 

file-system metadata to improve performance, so managing their 

contents is critical for optimum system performance. 

 


