MICROBIAL RESPIRATION

Dr. R. BALAGURUNATHAN Professor & Head Dept. of Microbiology Periyar University Periyar Palkalai Nagar Salem – 636 011.

Microbial Metabolism

- **A. Basic Concepts of Metabolism**
- **B. Glycolytic Pathways**
- **C. Fermentation**
- **D. Respiration**
- **E. Photosynthesis**
- F. Chemolithotrophy

Basic Concepts

Definitions

- Metabolism: The processes of catabolism and anabolism
- Catabolism: The processes by which a living organism obtains its energy and raw materials from nutrients
- Anabolism: The processes by which energy and raw materials are used to build macromolecules and cellular structures (biosynthesis)

Basic Concepts

Reduction and Oxidation

- An atom becomes more reduced when it undergoes a chemical reaction in which it
 - Gains electrons
 - By bonding to a less electronegative atom
 - And often this occurs when the atom becomes bonded to a hydrogen

Basic Concepts

Reduction and Oxidation

- An atom becomes more oxidized when it undergoes a chemical reaction in which it
 - Loses electrons
 - By bonding to a more electronegative atom
 - And often this occurs when the atom becomes bonded to an oxygen

Reduction and Oxidation

- In metabolic pathways, we are often concerned with the oxidation or reduction of carbon.
- Reduced forms of carbon (e.g. hydrocarbons, methane, fats, carbohydrates, alcohols) carry a great deal of potential chemical energy stored in their bonds.
- Oxidized forms of carbon (e.g. ketones, aldehydes, carboxylic acids, carbon dioxide) carry very little potential chemical energy in their bonds.

Reduction and Oxidation

Reduction and oxidation always occur together. In a reduction-oxidation reaction (redox reaction), one substance gets reduced, and another substance gets oxidized. The thing that gets oxidized is called the electron donor, and the thing that gets reduced is called the electron acceptor.

Enzymatic Pathways for Metabolism

- Metabolic reactions take place in a step-wise fashion in which the atoms of the raw materials are rearranged, often one at a time, until the formation of the final product takes place.
- Each step requires its own enzyme.
- The sequence of enzymatically-catalyzed steps from
 a starting raw material to final end products is
 called an enzymatic pathway (or metabolic
 pathway)

Cofactors for Redox Reactions

 Enzymes that catalyze redox reactions typically require a cofactor to "shuttle" electrons from one part of the metabolic pathway to another part.

- There are two main redox cofactors: NAD and FAD. These are (relatively) small organic molecules in which part of the structure can either be reduced (e.g., accept a pair of electrons) or oxidized (e.g., donate a pair of electrons).

Cofactors for Redox Reactions

$NAD_{(oxidized)} + H^+ + Pair of electrons \rightarrow NADH_{(reduced)}$

$FAD_{(oxidized)} + H^+ + Pair of electrons \rightarrow FADH_{(reduced)}$

NAD and FAD are present only in small (catalytic) amounts – they cannot serve as the final electron acceptor, but must be regenerated (reoxidized) in order for metabolism to continue.

ATP: A "currency of energy" for many cellular reactions

- ATP stands for adenosine triphosphate. It is a nucleotide with three phosphate groups linked in a small chain.
- The last phosphate in the chain can be removed by hydrolysis (the ATP becomes ADP, or adenosine diphosphate).

This reaction is energetically favorable: it has a DG°' of about **-7.5 kcal/mol**

ATP + H₂O ® ADP + Phosphate + Energy (7.5 kcal/mol)

Respiration

• Features of respiratory pathways

- Pyruvic acid is oxidized completely to CO_2 .
- The final electron acceptor is usually an inorganic substance.
- NADH is oxidized to form NAD: Essential for continued operation of the glycolytic pathways.
- O_2 may or may not be required.
 - Aerobic respiration: O_2 is the final e^- acceptor.
 - Anaerobic respiration: An substance, usually inorganic, other than O_2 is the acceptor (eg nitrate, nitrite, sulfate)
- A lot of additional ATP are made (up to 36 per glucose molecule).

Stages of Respiration

- Preliminary reactions and the Krebs cycle (TCA or Citric Acid Cycle)
- Respiratory electron transport

Respiration in Bacteria

Respiration: Different electron acceptors in bacteria

Aerobic respiration (many bacteria & eukaryotic mitochondria) ¹/₂ 0₂

Anaerobic respiration

NO₂⁻ NO₃²⁻

Nitrate reduction (e.g., in several gram-negative enteric bacteria such as E. coli)

Sulfate reduction (e.g., Desulfovibrio & Desulfotomaculatum)

Nitrite reduction (e.g., Pseudomonas, Bacillus, and related soil and aquatic genera)

Sulfur reduction (Desulfuromonas)

<u>Metabolism – An overview</u>

- Features of glycolytic pathways
 - Partial oxidation of glucose to form pyruvic acid
 - A small amount of ATP is made
 - -A small amount of NAD is reduced to NADH

<u>Glycolytic Pathways</u>

Major glycolytic pathways found in different bacteria:

- Embden-Meyerhoff-Parnas pathway
 - "Classic" glycolysis
 - Found in almost all organisms

– Hexose monophosphate pathway

- Also found in most organisms
- Responsible for synthesis of pentose sugars used in nucleotide synthesis
- Entner-Doudoroff pathway
 - Found in **Pseudomonas** and related genera
- Phosphoketolase pathway
 - Found in *Bifidobacterium* and *Leuconostoc*

Overview of Cell Metabolism

Energy Generating Patterns

- After Sugars are made or obtained, they are the major energy source of life.
- Breakdown of sugar (catabolism) different ways:
 - Aerobic respiration
 - Anaerobic respiration
 - Fermentation

Aerobic respiration

- Most efficient way to extract energy from glucose.
- Process: Glycolysis

Kreb Cycle

Electron transport chain

- **Glycolysis** : Several glycolytic pathways
- The most common one:

glucose----> pyruvic acid + 2 NADH + 2ATP

General Outline of Aerobic Respiration

General Outline

Gly	vcol	ysis

Energy In: 2 ATP

Energy Out: 4 ATP

NET 2 ATP

How Glycolysis Works

Krebs Cycle

Electron Transport Chain

- Groups of redox proteins
 - On inner mitochondrial membrane
 - Binding sites for NADH and FADH₂
 - On matrix side of membrane
 - Electrons transferred to redox proteins
 - NADH reoxidized to NAD⁺
 - $FADH_2$ reoxidized to FAD

Generation of a proton-motive force(1)

Generation of a proton-motive force(2)

Mechanism of ATPase

Electron Transport System and ATP Synthesis

Anaerobic respiration

- Final electron acceptor : **never be O2**
- Sulfate reducer: final electron acceptor is sodium sulfate (Na₂ SO₄)
- Methane reducer: final electron acceptor is
 CO₂
- Nitrate reducer : final electron acceptor is sodium nitrate (NaNO₃)
- O_2/H_2O coupling is the most oxidizing, more energy in aerobic respiration.

Therefore, anaerobic is less energy efficient.

Glycosis:

Glucose ---->2 Pyruvate (P.A)+ 2ATP + 2NADH

Fermentation pathways
 a. Homolactic acid F.
 P.A ----> Lactic Acid
 eg. Streptococci, Lactobacilli
 b. Alcoholic F.
 P.A ----> Ethyl alcohol
 eg. yeast

Fermentation – An overview

Alcoholic fermentation

c. Mixed acid fermentation

P.A ----> lactic acid

acetic acid

H2 + CO2

succinic acid

ethyl alcohol

eg. E.coli and some Enterobacter

d. Butylene-glycol F.

P.A ----> 2,3, butylene glycol

eg. **Pseudomonas**

e. Propionic acid F.

P.A ----> 2 propionic acid

eg. Propionibacterium

Metabolic strategies

	Pathways involved	Final e- acceptor	ATP yield
Aerobic respiration	Glycolysis, TCA, ET	02	38
Anaerobic respiration	Glycolysis, TCA, ET	NO ₃ ⁻ , SO ₄ ⁻² , CO ₃ ⁻³	variable
Fermentat	Glycolysis	Organic molecules	2
10 n		molecules	

Energy/carbon classes of organisms

<u>Comparison of reaction centers of</u> <u>anoxyphototrophs</u>

Overview of Photosynthesis

– Light-dependent Reactions:

- Light energy is harvested by photosynthetic pigments and transferred to special reaction center (photosystem) chlorophyll molecules.
- The light energy is used to strip electrons from an electron donor (the electron donor goes from a reduced to an oxidized state).
- The electrons are shuttled through a series of electron carriers from high energy state to a low energy state.
- During this process, ATP is formed.
- In the cyclic pathway of electron transport, electrons are returned to the electron transport chain
- In the noncyclic pathway, the electrons are used to reduce NAD (or NADP) to NADH (or NADPH)

Light-independent Reactions:

- ATP and NADH (NADPH) from the lightdependent reactions are used to reduce
 CO₂ to form organic carbon compounds (carbon fixation).
- The reduced organic carbon is usually converted into glucose or other carbohydrates.

Oxygenic photosynthesis

- Found in cyanobacteria (blue-green algae) and eukaryotic chloroplasts
- Electron donor is H_2O : Oxidized to form O_2
- Two photosystems: PSII and PSI
- Major function is to produce NADPH and ATP for the carbon fixation pathways

Oxygenic photosynthesis

Anoxygenic photosynthesis

- Found in:
 - Green sulfur bacteria (e.g. *Chlorobium*)
 - Green nonsulfur bacteria (e.g. *Chloroflexus*)
 - Purple sulfur bacteria (e.g. Chromatium)
 - Purple nonsulfur bacteria (e.g. Rhodobacter)

Anoxygenic photosynthesis (cont.)

b) Electron donors vary:

- H_2S or S_o in the green and purple sulfur bacteria
- H₂ or organic compounds in the green and purple nonsulfur bacteria
- c) <u>Only one photosystem</u>
 - In green bacteria, the photosystem is similar to PSI
 - In purple bacteria, the photosystem is similar to PSII
- d) Primary function is ATP production, chiefly via cyclic photophosphorylation

Photosynthetic bacteria

(1) Chlorobium-green sulfur bacteria

Use green pigment chlorophyll Use H_2S (hydrogen sulfide), S (sulfur), $Na_2S_2O_3$ (sodium thiosulfate) and H_2 as e- donors.

- (2) **Chromatium-purple sulfur bacteria** Use purple carotenoid pigment, same e-donors
- (3) **Rhodospirillum**-non sulfur purple bacteria Use H₂ and other organic compounds such as isopropanol etc, as e-donors.

Reaction: CO₂ + 2H₂**A** ----> CH₂0 + H₂0 + 2**A** • A is not O

- Features of Chemolithotrophy
 - Electrons are removed from a reduced inorganic electron donor
 - The electrons are passed through a membrane bound electron transport pathway, often
 coupled to the synthesis of ATP and NADH
 - The electrons are ultimately passed to a final electron acceptor
 - ATP and NADH may be used to convert CO_2 to carbohydrate

Chemolithotrophy

Examples of electron donors

- Ammonia $(NH_4^+) \rightarrow Nitrite (NO_2^-)$ in Nitrosomonas
- Nitrite $(NO_2^-) \rightarrow Nitrate (NO_3^{2-})$ in Nitrobacter
- **Hydrogen sulfide (H₂S)** \rightarrow Sulfur (S_o) in *Thiobacillus* and *Beggiatoa*
- -Sulfur $(S_{\circ}) \rightarrow$ Sulfate (SO_4^{2-}) in Thiobacillus
- Hydrogen (H₂) \rightarrow Water (H₂O) in Alcaligenes

Chemolithotrophy

- **Examples of electron acceptors**
 - -**Oxygen** (O₂) → Water (H₂O)
 - in many organisms
 - Carbon dioxide $(CO_2) \rightarrow Methane (CH_4)$

in the methanogenic bacteria

Chlorophyll a and bacteriochlophyll a

Chemoautotroph

- Some bacteria use O_2 in the air to oxidize inorganic compounds and produce ATP (energy). The energy is enough to convert CO_2 into organic material needed for cell growth.
- Examples:
 - **Thiobacillus** (sulfur S)
 - Nitrosomonas (ammonia)
 - Nitrobacter (nitrite)
- Various genera (hydrogen etc.)

