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~ The Postulates of Quantum Mechanics. The formulation of quantum mechanics or wave mechanics
for the wave mechanj

. . . p i ra
: cal treatment of the structure of atom rests upon a few postulates which, fo
SYSteém moving in one dimension, say, along the x-coordinate, are given below.

Eirst Posiulate. The physical state of a system at time ¢ is described by the wave function (x, 7).

Second Postudare. The wave function w(x, 1) and its first and second derivatives dy (x,7)/Cx and

CTYX,1)/Cx- are continuous, finite and single valued for all values of x. Also, the wave function y (x, )
1S normalized, i.e.,

Jrf_—w*(x,t) wx,ndx =1 ...(48)

where y* is the complex conjugate of y formed by replacing i with -i wherever it occurs in the

function w (i = J/-1).

Third Postulate. A physically observable quantity can be represented by a Hermitian operator.
An operator A4 is said to be Hermitian if it satisties the following condition :

fvi dvar = [y, GAvra

where y; and yj; are the wave functions representing the physical states of the quantum system, such as
a particle, an atom or a molecule.

...(49)

Fourth Postulate. The allowed values of an observableA are the eigenvalues, a;, n the operator equation

...(50)

A Vi = a4y

Eq. 50 is known as an eigenvalue equation. Here 4 is the operator for the observable (physical
A
quantity) and y; is an eigenfunction of 4 with eigenvalue a;, In other words

observable A yields the eigenvalue a;.

Fifth_Postulate. The average value.(or,‘the expectat{on value), < 4 > of ap observable 4.
corresponding to the operator4, 1s obtained from the relation

» Mmeasurement of the

w0 A
<A> = J w*A ydx

..(51)
where the function 18 assumed to be normalized in accordance with Eq. 48 Thos, e dverage value
of, say, the x—coordinate 1$ given by

8] & A d
= x «t
< X > J'_ ,:(// v ” (52)

Sixtls Posiulgte. The quantum mechanical operators corresponding to the observabjes are constructed
bv writing the classical expressions in terms of the variables and converting the expressions to the

B il o R
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operators, as shown Table 1.

TABLE 1
Wave Mechanical Operators for Evaluating Various Classical Variables
Classical | Quantum o )
variable | mechanical operator perator Operation
| AN
X 1 X X Multiplication by x
% y .y
P, : D, —th ™ Taking derivative with respect to x and multiplying
; by - if
2 | 32 x2 Multiplication by x?
2
| A a
p\2 x ,)\2 - h? o2 Taking second derivative with respect to x and
i ‘ o multiplying by - #2
1 | g ? Multiplying by ¢
E ' [} ih ‘6’7 Tak.ing derivative with respect to ¢ and multiplying
' by it
Seventh Postulate. The wave function w (x, t) is a solution of the time-dependent equation
4 L Ow(x,t
Hy(x,t) =il ————'/(a ) ...(53)
/A

"N
where H is the Hamiltonian operator of the system.

The Schrodinger Wave Equation

Erwin Schrodinger, in 1926, gave a wave equation to describe the behaviour of electron waves in
atoms and molecules. In Schrodinger’s wave model of an atom, the discrete energy levels or orbits
proposed by Bohr are replaced by mathematical functions, y, which are related to the probability of
finding electrons at various places around the nucleus.

Consider a simple wave motion as that of the vibration of a stretched string. Let y be the
amplitude of this vibration at any point whose coordinate is x at time . The equation for such a wave
motion may be expressed as

Py 1 8%y

ox? w? ot (54)

where u is the velocity with which the wave is propagating. There are two variables, x and ¢, in the above
differential equation, i.e., the amplitude y depends upon two variables x and 7.

In order to solve the above differential equation, it is necessary to separate the two variables.
Thus, vy may be expressed as

y = fix) g) ...(55)

where fix) is a function of the coordinate x only and g(f) is a function of the time ¢ only. For
stationary waves, such as occur in a stretched string, the function g(7) is represented by the expression

g (1) = A sin (2nvr) ..(56)

where v is the vibrational frequency and A4 is a constant known as the maximum amplitude. Hence, for
stationary waves, the equation for y may be written as

y = f(x) 4 sin 2nvr) 57

Hence,

5 = - f(x) 4n*V? A sin 2nvr) (58)

= — 412 f(x) g(1) . (59)
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Similarly . follows from Eq. 57 that
a2 f"f(\) ...(60)
— = —5— &)
) dx” cx”
Combinmg Eqs. 54, 59 and 60, we have
D )
o f(x) 4n-ve ) -..(61)
Frw A g
ox- V- _ A
velocity u by the expression

"= As s well known, the frequency of the vibrations v is related to the have
¢=V4. where A 1s the corresponding wave length. Hence, from Eq. 61, we

..(62)

.

(’:f(x) _ 4n° ’
ax? 22 Fx)

may now extend it to three
11 then be replaced by the
simplicity, it may be put

Eq. 62 1s valid for the wave motion in one dimension only. We ;
Evidently, f(x) W1

‘dlmcpsiong repfesemed by the coordinates X, Y and Z.
amplitude function for the three coordinates, say, ¥ (x, ¥y, 2)- For the sake of
merely as . Hence, Eq. 62 takes the form

&y ey @& 47
VBV 8 2% ...(63)
ax? oyt 8t A

trian physicist, applied the above treatment to

Following de Broglie’s ideas, Schrodinger, the Aus
ctrons, atoms and molecules.

material waves associated with all particles including ele
Incorporating de Broglie’s relationship, viz., A = h/mu, in Eq. 63, we have

&y &y 4nimiu?
Az+-‘2+,\7 =" h2 4 (64)

ox oy &z”

where m is the mass and « is the velocity of the particle.

The kinetic energy of the particle given by %muz, is equal to the total energy E minus the
potential energy V of the particle, i.e.,
KE =4m? =E-V or m?=2E-V) ..(65)
Combining this result with Eq. 64, we get
dv dy v, 8n2m(E - V)
ax? 5)12 o h?
66 is the well known Schrodinger wave equation proposed by him in 1926. It is the most

V=20 ..(66)

Eq. r .
celebrated equation 1In wave mechanics. It is customarily written in the fol loWwing form -
o | & + & + o 174
- - i s B
2m\ ox° oy-  0oz7 =Ey “
g2 g _
or 2m v =Ey (h =h/2m) waliE}
where y? (read as -del squared’) is the Laplacian operator, defined as
0 0 i

2 = —= t @t —
Vi = oy o L (69)

y
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Detining the Hamiltonian operator H as

'f)‘ 2 y
H - 7;;\' + V ...(70)

Eq. 08 becomes

Hy = Ey (71

E Schrodinger (1887-1961) shared the 1933 Physics Nobel Prize with P.A.M. Dirac (1902-1984)
for the discovery of new productive forms of atomic theory.

The Schrodinger equation can have several solutions, not all of which correspond to any physical
or chemical reality. Such solutions or wave functions are, therefore, not acceptable. The acceptable
wave functions must satisty the following conditions :

| The wave function v is single-valued, i.e., for each value of the variables x, ¥, Z, there is only
one value of . Suppose one of the variables is an angle 6. Then, single-valuedness of  requires that

w(@) = w(® + 2nm) where n is an integer.

2 The wave function y and its first derivative with respect to its variables must be continuous,
i.e.. there must not be any sudden change in y when its variables are changed.

3. For bound states, y must vanish at infinity. If yis a complex function, then w* y must vanish
at infinity (y* is the complex conjugate of ).

Satistying the above conditions, the Schrodinger equation yields significant solutions for certain
definite values of the total energy E. These values ar¢ called eigenvalues. Eq. 71 is, thus, an
eigenvalue equation and we can write 1t as

Hy, = E,y, = 1, 25 3yemse.- ) .(72)

where n is the quantum number. We express Eq. 72 by saying that y, are the eigenfunctions and E,
are the eigenvalues. For an atom, these eigenvalues correspond to_discrete sets of energy values

postulated by Bohr.
4. The eigenfunctions are said to form an orthonormal set it

* O, F
J'w,, w, dr = [1 n#Em s (called the Kronecker delta) (T3)
, n=m
They are orthogonal when Jl// ZV/ mdt =0 ...(74)
and normalised when j W dt =1 ...(75)

It is possible to identify regions of space around the nucleus where there is high probability of
locating an electron associated with a specitic energy. This space is called an atomic orbital. An
atomic orbital, thus, represents 2 definite region in three-dimensional space around the nucleus
where there is high probability of finding an electron of 2 specific energy E.

Statistical interpretation of . It was Max Born (1882-1970), the German physicist, who gave

statistical interpretation of the function v, calling it the probability amplitude function. Born won the
1954 Physics Nobel Prize for this interpretation. If w(x) is the wave function of a particle, then, the

probability of finding the particle within the range from x to x+dx is given by
Pr)dy = y*ydx = |y|idx

where 1* denotes the complex conjugate of . Note that P(x)
probability density.

...(76)
dx 1s the probability and P(x) is the
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’ C e electromagenetic fie :
- ,5\\ ©RnOw that i the case of light waves, the intensity of lhc Ll‘u,‘lr(;lnn(:;f‘lgccasc of a particle, the
e i quare ot the amphitude of the wave at that point. L’lfew‘m}o ortional to the square of the
Probdability of s being tound between the region x and (x+dv) o Zt that point. Since the total
Nave function, ; the square of the probability amplitude function

B
Probability of locating the particle must be unity, we have

- o0 0 "
J. r’P(\)(t‘ J‘MU/*V dx J '(//l"([\'zl

sl Wl )

For motion 1n three dimensions.

j P(rydr :jl'//(;)lde’ =1

‘here the inra. . ; 3p = s
where the ntegration 1s carried over the three-dimensional volume element d°r = dxdydz

It may be noted tha 11 Bohr’s theory, the electron associated with a definite energy is COIHSIId‘i.rSd
10 be located ar a definite distance from the nucleus. In wave mechanics, the equation to; calcu adl g
the exacr energy of the electron has been derived but there is a considerable uncertainty with regard to
IS exact location. This is in conformity with the Heisenberg uncertainty principle.

Operators in Quantum Mechanics

The concept of OP€ralors 1s very important in wave mechanics. We have already listed a few
operators in the sixth postulate of quantum mechanics. Here we shall briefly deal with the algebra of

operators. If 4 and B are two oOperators and fis a function upon which they operate, then
(A+~B)f - Af+Bys ...(79)
and (A-B)f = Af-Bf ...(80)

Thus, we can generate new operators A+ B and A- B by adding and subtracting A and B.
Also,

...(78)

A+B =B+ 4 ~..(81)
A-B = _B4 4 ...(82)

The multiplication of operators can be carried out by doing successive operations with two or more
N A
operators on a function. If 4 and B are two operators zind [ 1s their operand, then We can obtain the

quantity A j;f as tollows : We first operate on f with B to obtain f’, that is, l/}\f = f'. Then, fis
operated upon by 4 to obtain /"', that is, A" =f""_ Thus, we have

ABf =f" ...(83)

It should be remembered that the order of application of operators is always from right to left ag
they are written. Application of the same operator several times in succession is written with g power
Thus, we have

AAf = A%F ..(84)

Commutation of Operators. The algebra of operators should pe
of ordinary numbers. If a and b are two numbers, then we know that

axXb = bXa

distinguisheq from the algebra

-..(85)

NN

Vs I :
3 : operators, then their pr . A A
However, if 4 and B are two op product 4 B may or may not be equal to B A

4B - /B ;; then the commutator of the two operators is defined as
It = 9

/ ’3://_~/2:0
[A.Bl = AB- B (86
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