

Some definition: A function is a named, independent section of C code that

performs a specific task and optionally returns a value to the calling program

or/and receives values(s) from the calling program.

 Basically there are two categories of function:

1. Predefined functions: available in C / C++

standard library such as stdio.h, math.h,

string.h etc.

2. User-defined functions: functions that

programmers create for specialized tasks

such as graphic and multimedia libraries,

implementation extensions or dependent

etc.

 Let try a simple program example that using a simple user defined

function,

C
FUNCTIONS

cfunctions/functionsimpleuserdefine.txt
cfunctions/functionsimpleuserdefine.txt

 The following statement call cube() function, bringing

along the value assigned to the fInput variable.

fAnswer = cube(fInput);

 When this statement is executed, program jump to the
cube() function definition.

 After the execution completed, the cube() function returns

to the caller program (main()), assigning the returned

value, fCubeVolume to fAnswer variable for further

processing (if any).
 In this program the scanf() and print() are examples

of the standard predefined functions.

C
FUNCTIONS

 Basically a function has the following characteristics:

1. Named with unique name .

2. Performs a specific task - Task is a discrete job that the

program must perform as part of its overall operation, such

as sending a line of text to the printer, sorting an array into

numerical order, or calculating a cube root, etc.

3. Independent - A function can perform its task without

interference from or interfering with other parts of the

program.

4. May receive values from the calling program (caller) -

Calling program can pass values to function for processing

whether directly or indirectly (by reference).

5. May return a value to the calling program – the called

function may pass something back to the calling program.

C
FUNCTIONS

 The following figure illustrates function calls (also the memory’s

stack record activation – construction & destruction.

C
FUNCTIONS

 Function can be called as many

times as needed as shown for
function_2(…).

 Can be called in any order

provided that it has been

declared (as a prototype) and

defined.

C
FUNCTIONS

 This would be the contents of the stack if we have a
function MyFunct() with the prototype,

 int MyFunct(int arg1, int arg2, int arg3) ;

 and in this case, MyFunct() has two local int variables.

(We are assuming here that sizeof(int) is 4 bytes).

 The stack would look like this if the main() function

called MyFunct() and control of the program is still

inside the function MyFunct().

 main() is the "caller" and MyFunct() is the "callee".

 The ESP register is being used by MyFunct() to point to

the top of the stack.
 The EBP register is acting as a "base pointer".

C
FUNCTIONS

 Return values of 4 bytes or less are stored in the EAX

register.

 If a return value with more than 4 bytes is needed,

then the caller passes an "extra" first argument to the

callee.

 This extra argument is address of the location where

the return value should be stored. i.e., in C jargon the

function call,

x = MyFunct(a, b, c);

 is transformed into the call,

MyFunct(&x, a, b, c);

 Note that this only happens for function calls that

return more than 4 bytes.

C
FUNCTIONS

 Is the actual function body, which contains the code

that will be executed as shown below (previous

example).

Function Definition

int cube(int fCubeSide)

{

 // local scope (local to this function)

 // only effective in this function 'body'

 int fCubeVolume;

 // calculate volume

 fCubeVolume = fCubeSide * fCubeSide * fCubeSide;

 // return the result to caller

 return fCubeVolume;

}

C
FUNCTIONS

 First line of a function definition is called the function

header, should be identical to the function prototype,

except the semicolon.
 Although the argument variable names (fCubeSide in this

case) were optional in the prototype, they must be included

in the function header.

 Function body, containing the statements, which the

function will perform, should begin with an opening brace

and end with a closing brace.
 If the function returns data type is anything other than void

(nothing to be returned), a return statement should be

included, returning a value matching the return data type
(int in this case).

C
FUNCTIONS

 The first line of every function definition is called function header. It has 3

components, as shown below,

The Function header

1. Function return type - Specifies the data type that the function should
returns to the caller program. Can be any of C data types: char, float,

int, long, double, pointers etc. If there is no return value, specify a

return type of void. For example,

int calculate_yield(…) // returns an int type

float mark(…) // returns a float type

void calculate_interest(…) // returns nothing

C
FUNCTIONS

1. Function name - Can have any name as long as the

rules for C / C++ variable names are followed and

must be unique.

2. Parameter list - Many functions use arguments, the

value passed to the function when it is called. A

function needs to know the data type of

each argument. Argument type is provided in the

function header by the parameter list. Parameter list

acts as a placeholder.

C
FUNCTIONS

 For each argument that is passed to the function, the

parameter list must contain one entry, which specifies the

type and the name.

 For example,

void myfunction(int x, float y, char z)

void yourfunction(float myfloat, char mychar)

int ourfunction(long size)

 The first line specifies a function with three
arguments: type int named x, type float named y

and type char named z.

 Some functions take no arguments, so the parameter list
should be void or empty such as,

long thefunction(void)

void testfunct(void)

int zerofunct()

C
FUNCTIONS

For the first function call:

Then, the second function call:

 Each time a function is called, the different arguments are passed to

the function’s parameter.
 z = half_of(y) and z = half_of(x), each send a different

argument to half_of() through the k parameter.

 The first call send x, which is 3.5, then the second call send y, which

is 65.11.

 The value of x and y are passed (copied) into the parameter k of

half_of().

 Same effect as copying the values from x to k, and then y to k.

 half_of() then returns this value after dividing it by 2.

C
FUNCTIONS

 Enclosed in curly braces, immediately follows the function header.

 Real work in the program is done here.

 When a function is called execution begins at the start of the

function body and terminates (returns to the calling program) when
a return statement is encountered or when execution reaches

the closing braces (}).

 Variable declaration can be made within the body of a function.

 Which are called local variables. The scope, that is the visibility

and validity of the variables are local.

 Local variables are the variables apply only to that particular

function, are distinct from other variables of the same name (if any)

declared elsewhere in the program outside the function.

 It is declared, initialized and use like any other variable.

 Outside of any functions, those variables are called global

variables.

The Function Body

C
FUNCTIONS

 Function program example: local and global variable

 The function parameters are considered to be variable

declarations.
 Function prototype normally placed before main() and your

function definition after main() as shown below.

 For C++, the standard said that we must include the prototype but

not for C.

C
FUNCTIONS

cfunctions/functiongloballocalvariable.txt

#include …

/* function prototype

*/

int funct1(int);

int main()

{

 /* function call

*/

 int y =

funct1(3);

 …

}

/* Function

definition */

int funct1(int x)

{…}

But it is OK if we directly declare and define the function
before main() as shown below.

#include …

/* declare and define */

int funct1(int x)

{

 …

}

int main()

{

 /* function call */

 int y = funct1(3);

 …

}

Three rules govern the use of variables in functions:

1. To use a variable in a function, we must declare it in the function header or the

function body.

2. For a function to obtain a value from the calling program (caller), the value must be

passed as an argument (the actual value).

3. For a calling program (caller) to obtain a value from function, the value must be

explicitly returned from the called function (callee).

C
FUNCTIONS

 Normally placed before the start of main() but must

be before the function definition.

 Provides the compiler with the description of a function

that will be defined at a later point in the program.

 Includes a return type which indicates the type of

variable that the function will return.

 And function name, which normally describes what the

function does.

 Also contains the variable types of the arguments that

will be passed to the function.

 Optionally, it can contain the names of the variables

that will be returned by the function.
 A prototype should always end with a semicolon (;).

C
FUNCTIONS

 The number of arguments and the type of each argument must match

the parameters in the function header and prototype.

 If the function takes multiple arguments, the arguments listed in the

function call are assigned to the function parameters in order.

 The first argument to the first parameter, the second argument to the

second parameter and so on as illustrated below.

 Basically, there are two ways how we can pass something to

function parameters,

1. Passing by value.

2. Passing by reference using array and pointer.

C
FUNCTIONS

 Header files contain numerous frequently used functions that programmers

can use without having to write codes for them.

 Programmers can also write their own declarations and functions and store

them in header files which they can include in any program that may require

them (these are called user-defined header file which contains user defined

functions).

Standard Header File

 To simplify and reduce program development time and cycle, C provides

numerous predefined functions.

 These functions are normally defined for most frequently used routines.

 These functions are stored in what are known as standard library which
consist of header files (with extension .h, .hh etc).

 In the wider scope, each header file stores functions, macros, enum,

structures (struct) , types etc. that are related to a particular application or

task.

Header Files and Functions

C
FUNCTIONS

 We need to know which functions that are going to use,

how to write the syntax to call the functions and which

header files to be included in your program.

 Before any function contained in a header file can be

used, you have to include the header file in your

program. You do this by writing,

#include <header_filename.h>

 This is called preprocessor directive, normally placed at

the top of your program.

 You should be familiar with these preprocessor

directives, encountered many times in the program

examples previously discussed.

C
FUNCTIONS

 Complete information about the functions and the header file

normally provided by the compiler’s documentation.

 For your quick reference: C standard library reference.

User-defined Header Files

 We can define program segments (including functions) and store

them in files.

 Then, we can include these files just like any standard header file in

our programs.

Using Predefined Functions from Header File

Program example:

user defined

function

C
FUNCTIONS

http://en.wikipedia.org/wiki/C_standard_library
cfunctions/functionuserdefined.txt
cfunctions/functionuserdefined.txt
cfunctions/functionuserdefined.txt

Passing an array to a function

#include <stdio.h>

// function prototype

void Wish(int, char[]);

void main(void)

{

 Wish(5, "Happy");

}

What are the output and
the content of num &

mood variables after

program execution was

completed?

C
FUNCTIONS

#include <stdio.h>

void Rusted(char[]);

void main(void)

{

 // all work done in function Rusted()...

 Rusted("Test Test");

 printf("\n");

}

void Rusted(char x[])

{

 int j;

 printf("Enter an integer: ");

 scanf_s("%d", &j);

 for(; j != 0; --j)

 printf("In Rusted(), x = %s\n", x);

}

A function call from main() that passes a character string and
callee will print the number of character string based on the user
input.

Build this program, show

the output & what it do?

C
FUNCTIONS

 It is a de-referenced value of functptr, that is

(*funptr) followed by () which indicates a function,

which returns an integer data type.

 The parentheses are essential in the declarations because

of the operators’ precedence.

 The declaration without the parentheses as the following,

int * functptr();

 Will declare a function functptr that returns an integer

pointer that is not our intention in this case.

 In C, the name of a function, which used in an expression

by itself, is a pointer to that function.
 For example, if a function, testfunct() is declared as

follows,

int testfunct(int xIntArg);

C
FUNCTIONS

 The name of this function, testfunct is a

pointer to that function.

 Then, we can assign the function name to a
pointer variable functptr, something like this:

functptr = testfunct;

 The function can now be accessed or called, by

dereferencing the function pointer,

/* calls testfunct() with xIntArg as an argument

then assign the returned value to nRetVal */

nRetVal = (*funptr)(xIntArg);

 Program example: function pointers

C
FUNCTIONS

cfunctions/functionpointers.txt

 Function pointers can be passed as parameters in function calls and can be

returned as function values.
 It’s common to use typedef with complex types such as function pointers

to simplify the syntax (typing).

 For example, after defining,

typedef int (*functptr)();

 The identifier functptr is now a synonym for the type of 'a pointer to a

function which takes no arguments and returning int type'.
 Then declaring pointers such as pTestVar as shown below, considerably

simpler,

functptr pTestVar;

 Another example, you can use this type in a sizeof() expression or as a

function parameter as shown below,

/* get the size of a function pointer */

unsigned pPtrSize = sizeof (int (*functptr)());

/* used as a function parameter */

void signal(int (*functptr)());

C
FUNCTIONS

 Do not pass argument Do pass arguments

No return

void main(void)

{

 TestFunct();

 ...

}

void TestFunct(void)

{

 // receive nothing

 // and nothing to be

 // returned

}

void main(void)

{

 TestFunct(123);

 ...

}

void TestFunct(int i)

{

 // receive something and

 // the received/passed

 // value just

 // used here. Nothing

 // to be returned.

}

With a return

void main(void)

{

 x = TestFunct();

 ...

}

int TestFunct(void)

{

 // received/passed

 // nothing but need to

 // return something

 return 123;

}

void main(void)

{

 x = TestFunct(123);

 ...

}

int TestFunct(int x)

{

 // received/passed something

 // and need to return something

 return (x + x);

}

C
FUNCTIONS

END of C
FUNCTION

S

