

Some definition: A function is a named, independent section of C code that

performs a specific task and optionally returns a value to the calling program

or/and receives values(s) from the calling program.

 Basically there are two categories of function:

1. Predefined functions: available in C / C++

standard library such as stdio.h, math.h,

string.h etc.

2. User-defined functions: functions that

programmers create for specialized tasks

such as graphic and multimedia libraries,

implementation extensions or dependent

etc.

 Let try a simple program example that using a simple user defined

function,

C
FUNCTIONS

cfunctions/functionsimpleuserdefine.txt
cfunctions/functionsimpleuserdefine.txt

 The following statement call cube() function, bringing

along the value assigned to the fInput variable.

fAnswer = cube(fInput);

 When this statement is executed, program jump to the
cube() function definition.

 After the execution completed, the cube() function returns

to the caller program (main()), assigning the returned

value, fCubeVolume to fAnswer variable for further

processing (if any).
 In this program the scanf() and print() are examples

of the standard predefined functions.

C
FUNCTIONS

 Basically a function has the following characteristics:

1. Named with unique name .

2. Performs a specific task - Task is a discrete job that the

program must perform as part of its overall operation, such

as sending a line of text to the printer, sorting an array into

numerical order, or calculating a cube root, etc.

3. Independent - A function can perform its task without

interference from or interfering with other parts of the

program.

4. May receive values from the calling program (caller) -

Calling program can pass values to function for processing

whether directly or indirectly (by reference).

5. May return a value to the calling program – the called

function may pass something back to the calling program.

C
FUNCTIONS

 The following figure illustrates function calls (also the memory’s

stack record activation – construction & destruction.

C
FUNCTIONS

 Function can be called as many

times as needed as shown for
function_2(…).

 Can be called in any order

provided that it has been

declared (as a prototype) and

defined.

C
FUNCTIONS

 This would be the contents of the stack if we have a
function MyFunct() with the prototype,

 int MyFunct(int arg1, int arg2, int arg3) ;

 and in this case, MyFunct() has two local int variables.

(We are assuming here that sizeof(int) is 4 bytes).

 The stack would look like this if the main() function

called MyFunct() and control of the program is still

inside the function MyFunct().

 main() is the "caller" and MyFunct() is the "callee".

 The ESP register is being used by MyFunct() to point to

the top of the stack.
 The EBP register is acting as a "base pointer".

C
FUNCTIONS

 Return values of 4 bytes or less are stored in the EAX

register.

 If a return value with more than 4 bytes is needed,

then the caller passes an "extra" first argument to the

callee.

 This extra argument is address of the location where

the return value should be stored. i.e., in C jargon the

function call,

x = MyFunct(a, b, c);

 is transformed into the call,

MyFunct(&x, a, b, c);

 Note that this only happens for function calls that

return more than 4 bytes.

C
FUNCTIONS

 Is the actual function body, which contains the code

that will be executed as shown below (previous

example).

Function Definition

int cube(int fCubeSide)

{

 // local scope (local to this function)

 // only effective in this function 'body'

 int fCubeVolume;

 // calculate volume

 fCubeVolume = fCubeSide * fCubeSide * fCubeSide;

 // return the result to caller

 return fCubeVolume;

}

C
FUNCTIONS

 First line of a function definition is called the function

header, should be identical to the function prototype,

except the semicolon.
 Although the argument variable names (fCubeSide in this

case) were optional in the prototype, they must be included

in the function header.

 Function body, containing the statements, which the

function will perform, should begin with an opening brace

and end with a closing brace.
 If the function returns data type is anything other than void

(nothing to be returned), a return statement should be

included, returning a value matching the return data type
(int in this case).

C
FUNCTIONS

 The first line of every function definition is called function header. It has 3

components, as shown below,

The Function header

1. Function return type - Specifies the data type that the function should
returns to the caller program. Can be any of C data types: char, float,

int, long, double, pointers etc. If there is no return value, specify a

return type of void. For example,

int calculate_yield(…) // returns an int type

float mark(…) // returns a float type

void calculate_interest(…) // returns nothing

C
FUNCTIONS

1. Function name - Can have any name as long as the

rules for C / C++ variable names are followed and

must be unique.

2. Parameter list - Many functions use arguments, the

value passed to the function when it is called. A

function needs to know the data type of

each argument. Argument type is provided in the

function header by the parameter list. Parameter list

acts as a placeholder.

C
FUNCTIONS

 For each argument that is passed to the function, the

parameter list must contain one entry, which specifies the

type and the name.

 For example,

void myfunction(int x, float y, char z)

void yourfunction(float myfloat, char mychar)

int ourfunction(long size)

 The first line specifies a function with three
arguments: type int named x, type float named y

and type char named z.

 Some functions take no arguments, so the parameter list
should be void or empty such as,

long thefunction(void)

void testfunct(void)

int zerofunct()

C
FUNCTIONS

For the first function call:

Then, the second function call:

 Each time a function is called, the different arguments are passed to

the function’s parameter.
 z = half_of(y) and z = half_of(x), each send a different

argument to half_of() through the k parameter.

 The first call send x, which is 3.5, then the second call send y, which

is 65.11.

 The value of x and y are passed (copied) into the parameter k of

half_of().

 Same effect as copying the values from x to k, and then y to k.

 half_of() then returns this value after dividing it by 2.

C
FUNCTIONS

 Enclosed in curly braces, immediately follows the function header.

 Real work in the program is done here.

 When a function is called execution begins at the start of the

function body and terminates (returns to the calling program) when
a return statement is encountered or when execution reaches

the closing braces (}).

 Variable declaration can be made within the body of a function.

 Which are called local variables. The scope, that is the visibility

and validity of the variables are local.

 Local variables are the variables apply only to that particular

function, are distinct from other variables of the same name (if any)

declared elsewhere in the program outside the function.

 It is declared, initialized and use like any other variable.

 Outside of any functions, those variables are called global

variables.

The Function Body

C
FUNCTIONS

 Function program example: local and global variable

 The function parameters are considered to be variable

declarations.
 Function prototype normally placed before main() and your

function definition after main() as shown below.

 For C++, the standard said that we must include the prototype but

not for C.

C
FUNCTIONS

cfunctions/functiongloballocalvariable.txt

#include …

/* function prototype

*/

int funct1(int);

int main()

{

 /* function call

*/

 int y =

funct1(3);

 …

}

/* Function

definition */

int funct1(int x)

{…}

But it is OK if we directly declare and define the function
before main() as shown below.

#include …

/* declare and define */

int funct1(int x)

{

 …

}

int main()

{

 /* function call */

 int y = funct1(3);

 …

}

Three rules govern the use of variables in functions:

1. To use a variable in a function, we must declare it in the function header or the

function body.

2. For a function to obtain a value from the calling program (caller), the value must be

passed as an argument (the actual value).

3. For a calling program (caller) to obtain a value from function, the value must be

explicitly returned from the called function (callee).

C
FUNCTIONS

 Normally placed before the start of main() but must

be before the function definition.

 Provides the compiler with the description of a function

that will be defined at a later point in the program.

 Includes a return type which indicates the type of

variable that the function will return.

 And function name, which normally describes what the

function does.

 Also contains the variable types of the arguments that

will be passed to the function.

 Optionally, it can contain the names of the variables

that will be returned by the function.
 A prototype should always end with a semicolon (;).

C
FUNCTIONS

 The number of arguments and the type of each argument must match

the parameters in the function header and prototype.

 If the function takes multiple arguments, the arguments listed in the

function call are assigned to the function parameters in order.

 The first argument to the first parameter, the second argument to the

second parameter and so on as illustrated below.

 Basically, there are two ways how we can pass something to

function parameters,

1. Passing by value.

2. Passing by reference using array and pointer.

C
FUNCTIONS

 Header files contain numerous frequently used functions that programmers

can use without having to write codes for them.

 Programmers can also write their own declarations and functions and store

them in header files which they can include in any program that may require

them (these are called user-defined header file which contains user defined

functions).

Standard Header File

 To simplify and reduce program development time and cycle, C provides

numerous predefined functions.

 These functions are normally defined for most frequently used routines.

 These functions are stored in what are known as standard library which
consist of header files (with extension .h, .hh etc).

 In the wider scope, each header file stores functions, macros, enum,

structures (struct) , types etc. that are related to a particular application or

task.

Header Files and Functions

C
FUNCTIONS

 We need to know which functions that are going to use,

how to write the syntax to call the functions and which

header files to be included in your program.

 Before any function contained in a header file can be

used, you have to include the header file in your

program. You do this by writing,

#include <header_filename.h>

 This is called preprocessor directive, normally placed at

the top of your program.

 You should be familiar with these preprocessor

directives, encountered many times in the program

examples previously discussed.

C
FUNCTIONS

 Complete information about the functions and the header file

normally provided by the compiler’s documentation.

 For your quick reference: C standard library reference.

User-defined Header Files

 We can define program segments (including functions) and store

them in files.

 Then, we can include these files just like any standard header file in

our programs.

Using Predefined Functions from Header File

Program example:

user defined

function

C
FUNCTIONS

http://en.wikipedia.org/wiki/C_standard_library
cfunctions/functionuserdefined.txt
cfunctions/functionuserdefined.txt
cfunctions/functionuserdefined.txt

Passing an array to a function

#include <stdio.h>

// function prototype

void Wish(int, char[]);

void main(void)

{

 Wish(5, "Happy");

}

What are the output and
the content of num &

mood variables after

program execution was

completed?

C
FUNCTIONS

#include <stdio.h>

void Rusted(char[]);

void main(void)

{

 // all work done in function Rusted()...

 Rusted("Test Test");

 printf("\n");

}

void Rusted(char x[])

{

 int j;

 printf("Enter an integer: ");

 scanf_s("%d", &j);

 for(; j != 0; --j)

 printf("In Rusted(), x = %s\n", x);

}

A function call from main() that passes a character string and
callee will print the number of character string based on the user
input.

Build this program, show

the output & what it do?

C
FUNCTIONS

 It is a de-referenced value of functptr, that is

(*funptr) followed by () which indicates a function,

which returns an integer data type.

 The parentheses are essential in the declarations because

of the operators’ precedence.

 The declaration without the parentheses as the following,

int * functptr();

 Will declare a function functptr that returns an integer

pointer that is not our intention in this case.

 In C, the name of a function, which used in an expression

by itself, is a pointer to that function.
 For example, if a function, testfunct() is declared as

follows,

int testfunct(int xIntArg);

C
FUNCTIONS

 The name of this function, testfunct is a

pointer to that function.

 Then, we can assign the function name to a
pointer variable functptr, something like this:

functptr = testfunct;

 The function can now be accessed or called, by

dereferencing the function pointer,

/* calls testfunct() with xIntArg as an argument

then assign the returned value to nRetVal */

nRetVal = (*funptr)(xIntArg);

 Program example: function pointers

C
FUNCTIONS

cfunctions/functionpointers.txt

 Function pointers can be passed as parameters in function calls and can be

returned as function values.
 It’s common to use typedef with complex types such as function pointers

to simplify the syntax (typing).

 For example, after defining,

typedef int (*functptr)();

 The identifier functptr is now a synonym for the type of 'a pointer to a

function which takes no arguments and returning int type'.
 Then declaring pointers such as pTestVar as shown below, considerably

simpler,

functptr pTestVar;

 Another example, you can use this type in a sizeof() expression or as a

function parameter as shown below,

/* get the size of a function pointer */

unsigned pPtrSize = sizeof (int (*functptr)());

/* used as a function parameter */

void signal(int (*functptr)());

C
FUNCTIONS

 Do not pass argument Do pass arguments

No return

void main(void)

{

 TestFunct();

 ...

}

void TestFunct(void)

{

 // receive nothing

 // and nothing to be

 // returned

}

void main(void)

{

 TestFunct(123);

 ...

}

void TestFunct(int i)

{

 // receive something and

 // the received/passed

 // value just

 // used here. Nothing

 // to be returned.

}

With a return

void main(void)

{

 x = TestFunct();

 ...

}

int TestFunct(void)

{

 // received/passed

 // nothing but need to

 // return something

 return 123;

}

void main(void)

{

 x = TestFunct(123);

 ...

}

int TestFunct(int x)

{

 // received/passed something

 // and need to return something

 return (x + x);

}

C
FUNCTIONS

END of C
FUNCTION

S

