

FUNCTIONS

Some definition: A function is a named, independent section of C code that
performs a specific task and optionally returns a value to the calling program

or/and receives values(s) from the calling program.

Basically there are two categories of function:

1. Predefined functions: available in C / C++
standard library such as stdio.h, math.h,
string.h etc.

2. User-defined functions: functions that

programmers create for specialized tasks

FUNCTIONS

= Lettry a simple program example that using a simple user defined
function,

e CIAWINDOWS\system32vcmd.exe

cfunctions/functionsimpleuserdefine.txt
cfunctions/functionsimpleuserdefine.txt

FUNCTIONS

» The following statement call cube () function, bringing
along the value assigned to the flnput variable.

fAnswer = cube (fInput):;

= When this statement is executed, program jump to the
cube () function definition.

= After the execution completed, the cube () function returns
to the caller program (main ()), assigning the returned
value, fCubeVolume t0 fAnswer variable for further

processing (if any).

FUNCTIONS

= Basically a function has the following characteristics:

1. Named with unique name .

2. Performs a specific task - Task is a discrete job that the
program must perform as part of its overall operation, such
as sending a line of text to the printer, sorting an array into
numerical order, or calculating a cube root, etc.

3. Independent - A function can perform its task without
Interference from or interfering with other parts of the
program.

4. May receive values from the calling program (caller) -

lIng program can pass values to function for processing

FUNCTIONS

» The following figure illustrates function calls (also the memory’s
stack record activation — construction & destruction.

int main(?nid]]
{...}

vold function 1l(int nIntArg)]
{-.}

int main (void)

{

[vuid function Z(char chCharArg, float nFloathArg)]
{-}

function 1 (nIntZrg);

functiun_ﬂ{chcharhrg, nFloathrg) ;

nénotherInt = Eunctiﬂn_ﬂ{chﬁnutherchar};
-

Eunctiun_ﬂ{chcharhrgl, nFloatfirgl) ; = —1?

t 0;
| retun Y. vold function Z(char chCharArgl, float nFloatArgl)]
[}

FUNCTIONS

= Function can be called as many
times as needed as shown for
function 2 (..).

= Can be called in any order
provided that it has been

declared (as a prototype) and

FUNCTIONS

This would be the contents of the stack if we have a
function MyFunct () with the prototype,

int MyFunct (int argl, int arg?Z2, int arg3)

and in this case, MyFunct () has two local int variables.
(We are assuming here that sizeof (int) IS 4 bytes).
The stack would look like this if the main () function
called MyFunct () and control of the program is still
Inside the function MyFunct ().

main () IS the "caller" and MyFunct () Is the "callee".
The ESP register is being used by MyFunct () to point to

the top of the stack.
The EBP register is acting as a "base pointer".

\
Return valuesF opz!\lb%;roqugslél e§e stored in the EAX

register.
If a return value with more than 4 bytes is needed,
then the caller passes an "extra" first argument to the

callee.
This extra argument is address of the location where

the return value should be stored. I.e., in C jargon the
function call,

x = MyFunct(a, b, c);
IS transformed into the call,
MyFunct (&x, a, b, c);

Note that this only happens for function calls that
turimesg than 4 bytes.

FUNCTIONS

Function Definition

* |s the actual function body, which contains the code
that will be executed as shown below (previous
example).

int cube(int fCubeSide)

{
// local scope (local to this function)
// only effective in this function 'body'
int fCubeVolume;

// calculate volume
fCubeVolume = fCubeSide * fCubeSide * fCubeSide;

// return the result to caller

FUNCTIONS

First line of a function definition is called the function
header, should be identical to the function prototype,
except the semicolon.

Although the argument variable names (fCubeSide In this
case) were optional in the prototype, they must be included
In the function header.

Function body, containing the statements, which the
function will perform, should begin with an opening brace

and end with a closing brace.
If the function returns data type is anything other than void

aothing to be returned), a return statement should be

| | R "3 e o

FUNCTIONS

The Function header

= The first line of every function definition is called function header. It has 3
components, as shown below,

parameter list (which hold arguments) with
their respective types if any else void. This 1s

a walue(s) or reference(s) recerved by
function.

function’s
retumed tvpe if
any else void

returned type function_name(type 1 parameter 1, type 2 parameter 2, ...)

1. Function return type - Specifies the data type that the function should
returns to the caller program. Can be any of C data types: char, float,
s double, pointers etc. |f there is no return value. specifv a

FUNCTIONS

1. Function name - Can have any name as long as the
rules for C / C++ variable names are followed and
must be unique.

2. Parameter list - Many functions use arguments, the
value passed to the function when it is called. A
function needs to know the data type of

each argument. Argument type is provided in the

function header by the parameter list. Parameter list

FUNCTIONS

* For each argument that is passed to the function, the
parameter list must contain one entry, which specifies the
type and the name.

= For example,

vold myfunction (int x, float y, char z)

void yourfunction(float myfloat, char mychar)
int ourfunction(long size)

= The first line specifies a function with three
arguments: type int named x, type float named y

and type char named z.
= ome functions take no arguments, so the parameter list

LV R A m -

FUNCTIONS |

z = half of(x):

For the first function call:
flcat nalf of (flocat kj

z = half_af[%]; l

float half of(float ki

Then, the second function call:

= Eachtime a function is called, the different arguments are passed to

the function’s parameter.
= =z = half of(y) andz = half of (x), each send a different

argumentto half of () through the k parameter.
= The first call send x, which is 3.5, then the second call send v, which
IS 65.11.

\
The Function Body F U N CTI O N S

= Enclosed in curly braces, immediately follows the function header.

» Real work in the program is done here.

= When a function is called execution begins at the start of the
function body and terminates (returns to the calling program) when
a return statement is encountered or when execution reaches
the closing braces (}).

= Variable declaration can be made within the body of a function.

= Which are called local variables. The scope, that is the visibility
and validity of the variables are local.

= Local variables are the variables apply only to that particular
function, are distinct from other variables of the same name (if any)

dJeclared elsewhere in the program outside the function.

T .

Fave o= =

FUNCTIONS

= Function program example: local and global variable

et IC:AWINDOWSAsystem 32vemd. exe

= The function parameters are considered to be variable
declarations.

= Function prototype normally placed before main () and your

action definition after main () as shown below.

cfunctions/functiongloballocalvariable.txt

. #include ..

: /* function prototype
Dx)
éint functl (int) ;

éint main ()

L

L)
f int y =
. functl (3) ;

2}
é/* Function

:definition */
éint functl (int x)

/* function call é

But it is OK if we directly declare and define the function

before main () as shown below. . .
§ #include ... :

/* declare and define */
L int functl(int x)

|

int main()
{

[* function call */
int y = funct1(3);

FUNCTIONS

Normally placed before the start of main () but must
be before the function definition.

Provides the compiler with the description of a function
that will be defined at a later point in the program.
Includes a return type which indicates the type of
variable that the function will return.

And function name, which normally describes what the
function does.

Also contains the variable types of the arguments that
will be passed to the function.

L I

FUNCTIONS

= The number of arguments and the type of each argument must match
the parameters in the function header and prototype.

= If the function takes multiple arguments, the arguments listed in the
function call are assigned to the function parameters in order.

= The first argument to the first parameter, the second argument to the
second parameter and so on as illustrated below.

functionlia, b, c):

NS

vold functionl(int =, int vy, int z)

<
Basi here are two ways how we can pass something to

FUNCTIONS

Header Files and Functions

» Header files contain numerous frequently used functions that programmers
can use without having to write codes for them.

» Programmers can also write their own declarations and functions and store
them in header files which they can include in any program that may require
them (these are called user-defined header file which contains user defined
functions).

Standard Header File

» To simplify and reduce program development time and cycle, C provides
numerous predefined functions.

» These functions are normally defined for most frequently used routines.

. These functions are stored in what are known as standard library which

ader files (with extension .h, .hh etc).

FUNCTIONS

We need to know which functions that are going to use,
how to write the syntax to call the functions and which
header files to be included in your program.

Before any function contained in a header file can be
used, you have to include the header file in your
program. You do this by writing,

#include <header filename.h>

This is called preprocessor directive, normally placed at
the top of your program.

Voass = = —

FUNCTIONS

Using Predefined Functions from Header File

= Complete information about the functions and the header file
normally provided by the compiler’s documentation.
= For your quick reference: C standard library reference.

User-defined Header Files

= \We can define program segments (including functions) and store
them in files.

= Then, we can include these files just like any standard header file in
our programs.

e C:AWINDOWS\system 3 2\emd.exe

http://en.wikipedia.org/wiki/C_standard_library
cfunctions/functionuserdefined.txt
cfunctions/functionuserdefined.txt
cfunctions/functionuserdefined.txt

FUNCTIONS

Passing an array to a function What are the output and
¥include <stdio.h> the content of num &

| mood variables after
// function prototype _
void Wish(int, char[]); program execution was
void main (void) completed?

{
Wish (5, "Happy"):;
}

/f Function definition
velid Wishi{int num, char mood[])
{

int i: num {iLaluls]
for(i = 1y i <= num; 1 =1 + 1)
printf ("I wish I'm %s'n", mood):

FUNCTIONS

Build this program, show
the output & what it do?

#include <stdio.h>
void Rusted(char[]):

void main (void)
{
// all work done in function Rusted()...
Rusted ("Test Test");
printf ("\n");

volid Rusted(char x[])

int j;

printf ("Enter an integer: ");
scanf s ("3sd", &Jj);

for(; J '= 0; --3J)

printf ("In Rusted(), x = %s\n", x);

FUNCTIONS

It is a de-referenced value of functptr, thatis
(*funptr) followed by () which indicates a function,
which returns an integer data type.

The parentheses are essential in the declarations because
of the operators’ precedence.

The declaration without the parentheses as the following,

int * functptr();

Will declare a function functptr that returns an integer

pointer that is not our intention in this case.

In C, the name of a function, which used in an expression
' IS a pointer to that function.

TR eree——

T
\ | U "
S e

FUNCTIONS

= The name of this function, testfunct is a
pointer to that function.

= Then, we can assign the function name to a
pointer variable functptr, something like this:

functptr = testfunct;

*» The function can now be accessed or called, by
dereferencing the function pointer,

/* calls testfunct () with xIntArg as an argument
y *

cfunctions/functionpointers.txt

FUNCTIONS

Function pointers can be passed as parameters in function calls and can be

returned as function values.
It's common to use typedef with complex types such as function pointers

to simplify the syntax (typing).
For example, after defining,

typedef 1int (*functptr) ();

The identifier functptr is now a synonym for the type of 'a pointer to a

function which takes no arguments and returning int type'.
Then declaring pointers such as pTestVvar as shown below, considerably

simpler,
functptr pTestVar;

Another example, you can use this type in a sizeof () expression or as a
nction parameter as shown below,

\

FUNCTIONS

Do not pass argument

Do pass arguments

No return

volid main (void)
{
TestFunct () ;

vold TestFunct (void)

{
// receive nothing
// and nothing to be
// returned

void main (void)
{
TestFunct (123) ;

volid TestFunct (int 1)

{
// receive something and
// the received/passed
// value just
// used here. Nothing
// to be returned.

}

With a return

void main (void)
{

x = TestFunct ()

int TestFunct (void)
{
// received/passed
// nothing but need to
// return something
return 123;

voilid main (void)
{
x = TestFunct (123);

int TestFunct (int x)

{

// received/passed something

// and need to return something

return

(x + x);

END of C
FUNCTION
S

