Classification

Classification vs. Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Prediction

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit approval
 - Target marketing
 - Medical diagnosis
 - Fraud detection

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
 - Supervised Learning

Classification – A Two Step Process

- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor' OR years > 6 THEN tenured = 'yes'

Using the Model in Prediction

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Issues: Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Issues: Evaluating Classification Methods

Accuracy

- classifier accuracy: predicting class label
- predictor accuracy: guessing value of predicted attributes

Speed

- time to construct the model (training time)
- time to use the model (classification/prediction time)

Robustness

handling noise and missing values

Issues: Evaluating Classification Methods

- Scalability
 - efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Decision Tree Induction

no

Decision tree

- Flow chart like tree structure
- Internal nodes test on an attribute
- Branch outcome of the test
- To classify sample trace path from root

Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - If all the samples belong to the same class the node becomes a leaf
 labeled with the class else choose attribute for partitioning
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

Attribute Selection

- Splitting Criteria
 - determines the best way to split
- Indicates the splitting attribute and split point
- Measures
 - Information Gain
 - Gain Ratio
 - Gini Index

Partitioning Scenarios

Attribute:

- Discrete Valued
 - A1, A2, A3.?
- Continuous Valued
 - A <= Split point; A > Split point
- Discrete Valued and Binary tree must be produced
 - $A \in S_A$

Decision Tree Induction

Conditions for stopping partitioning

- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning –
 majority voting is employed for classifying the leaf
- There are no samples left

Algorithm: Generate_decision_tree

- Input : Set of Samples D, attribute_list; Output : Decision tree
- Create a node N
- 2. If samples are all of the same class C then return N as a leaf node labeled C
- 3. If attribute_list is empty then return N as a leaf node labeled with the most common class in samples
- 4. Select test_attribute by applying Attribute_Selection_method(D, attribute_list)
- 5. Label node N with splitting_criterion
- 6. If splitting_attribute is discrete_valued and multiway splits allowed then remove splitting_attribute from attribute_list
- For each outcome j of splitting_criterion
 - Let D_i be the set of samples with outcome j
 - ☐ If D_i is empty then attach a leaf labeled with the most common samples
 - Else attach the node returned by Generate_decision_tree(D_i, attribute_list);
- Return N

Decision Tree Algorithm

- Complexity O(n x |D| x log |D|)
- Incremental versions
- Variants
 - ID3 (Iterative Dichotomiser)
 - C4.5
 - CART (Classification and Regression Tree)