
UNIT IV: Including files and applets in JSP pages and Using Java Beans components in
JSP documents

Including pages at request time: the jsp:includeaction, Including pages at page translation time:
the include directive, Forwarding request with jsp:Forward, Including applets for java plug-in,
Why use Beans?, What are Beans?, Using Beans: basic task, Example: StrignBean

Including pages at request time: the jsp:includeaction

The jsp:include action lets you include the output of a page at request time. Its main advantage
is that it saves you from changing the main page when the included pages change. Its main
disadvantage is that since it includes the output of the secondary page, not the secondary page’s
actual code as with the include directive, the included pages cannot use any JSP constructs that
affect the main page as a whole. The advantages generally far outweigh the disadvantages, and
you will almost certainly use it much more than the other inclusion mechanisms.

Suppose you have a series of pages, all of which have the same navigation bar, contact
information, or footer. What can you do? Well, one common “solution” is to cut and paste the
same HTML snippets into all the pages. This is a bad idea because when you change the
common piece, you have to change every page that uses it. Another common solution is to use
some sort of server-side include mechanism whereby the common piece gets inserted as the page
is requested. This general approach is a good one, but the typical mechanisms are server
specific. Enter jsp:include, a portable mechanism that lets you insert any of the following into the
JSP output:

• The content of an HTML page.
• The content of a plain text document.
• The output of JSP page.
• The output of a servlet.
The jsp:include action includes the output of a secondary page at the time the main page is
requested. Although the output of the included pages cannot contain JSP, the pages can be the
result of resources that use servlets or JSP to create the output. That is, the URL that refers to the
included resource is interpreted in the normal manner by the server and thus can be a servlet or
JSP page. The server runs the included page in the usual way and places the output into the main
page
Syntax:

<jsp:include page="relative-path-to-resource" />

Relative URLs that do not start with a slash are interpreted relative to the location of the main
page. Relative URLs that start with a slash are interpreted relative to the base Web application
directory, not relative to the server root. For example, consider

Java Server Pages, Servlets & Struts MSC.(CS)-SY
t-302UNIT IV: Including files and applets in JSP pages and Using Java Beans

components in JSP documents

Page 1

a JSP page in the headlines Web application that is accessed by the URL
http://host/headlines/sports/table-tennis.jsp. The table-tennis.jsp file is in the sports subdirectory
of whatever directory is used by the headlines Web application. Now, consider the following two
include statements.

<jsp:include page="bios/cheng-yinghua.jsp" />
<jsp:include page="/templates/footer.jsp" />

Example

Including pages at page translation time: the include directive

The include directive is used to to include a file in the main JSP document at the time the
document is translated into a servlet (which is typically the first time it is accessed).
The syntax is as follows:
<%@ include file="Relative URL" %>

include directive as works as a preprocessor: the included file is inserted character for character
into the main page, then the resultant page is treated as a single JSP page. So, the fundamental
difference between jsp:include and include directive is the time at which they are invoked:
jsp:include is invoked at request time, whereas the include directive is invoked at page
translation time. The difference in between two is summarize in following Table.

<P>
Here is a summary of our three most recent news stories:

<jsp:include page="/WEB-INF/Item1.html" />

<jsp:include page="/WEB-INF/Item2.html" />

<jsp:include page="/WEB-INF/Item3.html" />

</BODY></HTML>

http://host/headlines/sports/table-tennis.jsp

Forwarding request with jsp:Forward

JSP forward action tag is used for forwarding a request to the another resource (It can be a JSP,
static page such as html or Servlet). Request can be forwarded with or without parameter. In this
tutorial we will see examples of <jsp:forward> action tag.

Syntax:

1) Forwarding along with parameters.

<jsp:forward page="display.jsp">
<jsp:param ... />
<jsp:param ... />
<jsp:param ... />

...
<jsp:param ... />
</jsp:forward>

2) Forwarding without parameters.

<jsp:forward page="Relative_URL_of_Page" />

Relative_URL_of_Page: If page is in the same directory where the main page resides then use
page name itself as I did in the below examples.

JSP Forward Example 1 – without passing parameters

In this example we are having two JSP pages – index.jsp and display.jsp. We have used
<jsp:forward> action tag in index.jsp for forwarding the request to display.jsp. Here we are not
passing any parameters while using the action tag. In the next example we will pass the
parameters as well to another resource.

index.jsp

<html>
<head>
<title>JSP forward action tag example</title>
</head>
<body>
<p align="center">My main JSP page</p>
<jsp:forward page="display.jsp" />
</body>
</html>

display.jsp

<html>
<head>
<title>Display Page</title>
</head>
<body>
Hello this is a display.jsp Page
</body>
</html>

Output:

Below is the output of above cpde. It is basically the content of display.jsp, which clearly shows
that index.jsp didn’t display as it forwarded the request to the display.jsp page.

jsp:include is used to combine output from the main page and the auxiliary page. Instead of that
jsp:forward is used to obtain the complete output from the auxiliary page.

For example, here is a page that randomly selects either page1.jsp or page2.jsp to output.

Including applets for java plug-in

The jsp:plugin action tag is used to embed applet in the jsp file. The jsp:plugin action tag
downloads plugin at client side to execute an applet or bean.

<jsp:plugin type= "applet | bean" code= "nameOfClassFile" codebase= "directoryNameOfClass
File"

<% String destination;
if (Math.random() > 0.5)
{ destination =
"/examples/page1.jsp";
} else {
destination = "/examples/page2.jsp";
}
%>
<jsp:forward page="<%= destination %>" />

</jsp:plugin>

Example of displaying applet in JSP
In this example, we are simply displaying applet in jsp using the jsp:plugin tag. You must have
MouseDrag.class file (an applet class file) in the current folder where jsp file resides.

index.jsp

1. <html>
2. <head>
3. <title>Mouse Drag</title>
4. </head>
5. <body bgcolor="khaki">
6. <h1>Mouse Drag Example</h1>
7.
8. <jsp:plugin align="middle" height="500" width="500"
9. type="applet" code="MouseDrag.class" name="clock" codebase="."/>
10.
11. </body>
12. </html>

Attributes Description of jsp:plugin tag
Attribute name Required Description
Type Yes Specifies type of the component: applet or bean.
Code Yes Class name of the applet or JavaBean, in the form of

packagename.classname.class.
codebase Yes Base URL that contains class files of the component.
align Optional Alignment of the component. Possible values are: left, right,

top, middle, bottom.
archive Optional Specifies a list of JAR files which contain classes and

resources required by the component.
height, width Optional Specifies height and width of the component in pixels.
hspace, vspace Optional Specifies horizontal and vertical space between the

component and the surrounding components, in pixels.
jreversion Optional Specifies JRE version which is required by the component.

Default is 1.2.
name Optional Name of the component.
title Optional Title of the component.

nspluginurl,

iepluginurl

Optional Specifies URL where JRE plugin can be downloaded for
Netscape or IE browser, respectively.

mayscript Optional Accepts true/false value. If true, the component can access
scripting objects (Javascript) of the web page.

WHY USE BEANS?

Beans are regular Java classes that follow some simple conventions defined by the JavaBeans
specification; beans extend no particular class, are in no particular package, and use no particular
interface.

There are several advantages we can achieve while using bean. With beans in general, visual
manipulation tools and other programs can automatically discover information about classes that
follow this format and can create and manipulate the classes without the user having to explicitly
write any code.

In JSP in particular, use of JavaBeans components provides three advantages over script lets and
JSP expressions that refer to normal Java classes.

1. No Java syntax. By using beans, page authors can manipulate Java objects using only XML-
compatible syntax: no parentheses, semicolons, or curly braces. This promotes a stronger
separation between the content and the presentation and is especially useful in large development
teams that have separate Web and Java developers.

2. Simpler object sharing. When you use the JSP bean constructs, you can much more easily
share objects among multiple pages or between requests than if you use the equivalent explicit
Java code.

3. Convenient correspondence between request parameters and object properties. The JSP bean
constructs greatly simplify the process of reading request parameters, converting from strings,
and putting the results inside objects.

WHAT ARE BEANS?

Beans are simply Java classes that are written in a standard format. beans are the three simple
points outlined in the following list.

• A bean class must have a zero-argument (default) constructor.

You can satisfy this requirement either by explicitly defining such a constructor or by omitting
all constructors, which results in a zero-argument constructor being created automatically.

• A bean class should have no public instance variables (fields).

To be a bean that is accessible from JSP, a class should use accessor methods instead of allowing
direct access to the instance variables. It is an important design strategy in object-oriented
programming.

• Persistent values should be accessed through methods called getXxx and setXxx.

For example, if your Car class stores the current number of passengers, you might have methods
named getNumPassengers (which takes no arguments and returns an int) and setNumPassengers
(which takes an int and has a void return type).

In such a case, the Car class is said to have a property named numPassengers (notice the
lowercase n in the property name, but the uppercase N in the method names). If the class has a
getXxx method but no corresponding setXxx, the class is said to have a read-only property
named xxx.

The one exception to this naming convention is with Boolean properties: they are permitted to
use a method called isXxx to look up their values. So, for example, your Car class might have
methods called isLeased (which takes no arguments and returns a boolean) and setLeased (which
takes a boolean and has a void return type), and would be said to have a boolean property named
leased (again, notice the lowercase leading letter in the property name).

USING BEANS: BASIC TASK:

You use three main constructs to build and manipulate JavaBeans components in JSP

pages:

• jsp:useBean. In the simplest case, this element builds a new bean.

It is normally used as follows:

<jsp:useBean id="beanName" class="package.Class" />

If you supply a scope attribute the jsp:useBean element can either build a new bean or
access a preexisting one.

• jsp:getProperty. This element reads and outputs the value of a

property. Reading a property is a shorthand notation for calling a

method of the form getXxx. This element is used as follows:

<jsp:getProperty name="beanName" property="propertyName" />

• jsp:setProperty. This element modifies a bean property (i.e., calls a method of the form
setXxx). It is normally used as follows:

<jsp:setProperty name="beanName" property="propertyName"
value="propertyValue" />

The following subsections give details on these elements. Building Beans: jsp:useBean The
jsp:useBean action lets you load a bean to be used in the JSP page. Beans provide a very useful
capability because they let you exploit the reusability of Java classes without sacrificing the
convenience that JSP adds over servlets alone.

The simplest syntax for specifying that a bean should be used is the following.

<jsp:useBean id="name" class="package.Class" />

For example, the JSP action

<jsp:useBean id="book1" class="coreservlets.Book" />

can normally be thought of as equivalent to the scriptlet

<% coreservlets.Book book1 = new coreservlets.Book(); %>

Installing Bean Classes

The bean class definition should be placed in the same directories where servlets can be installed,
not in the directory that contains the JSP file. Just remember to use packages. Thus, the proper
location for individual bean

classes is WEB-INF/classes/subdirectoryMatchingPackageName

EXAMPLE: STRINGBEAN

Following program presents a simple class called StringBean that is in the coreservlets package.
Because the class has no public instance variables (fields) and has a zero-argument constructor
since it doesn’t declare any explicit constructors, it satisfies the basic criteria for being a bean.

Since StringBean has a method called getMessage that returns a String and another method
called setMessage that takes a String as an argument, in beans terminology the class is said to
have a

String property called message.

Following Program shows a JSP file that uses the StringBean class. First, an instance of

StringBean is created with the jsp:useBean action as follows.

<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

After this, the message property can be inserted into the page in either of the following

two ways.

<jsp:getProperty name="stringBean" property="message" />

<%= stringBean.getMessage() %>

StringBean.java
package coreservlets;
/** A simple bean that has a single String property
* called message.
*/
public class StringBean {
private String message = "No message specified";
public String getMessage() {
return(message);
}
public void setMessage(String message) {
this.message = message;
}
}
Following Program shows a JSP file that uses the StringBean class. First, an instance of
StringBean is created with the jsp:useBean action as follows.

<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

After this, the message property can be inserted into the page in either of the following two
ways.

<jsp:getProperty name="stringBean" property="message" />

<%= stringBean.getMessage() %>

The message property can be modified in either of the following two ways.

<jsp:setProperty name="stringBean" property="message" value="some message" />

<% stringBean.setMessage("some message"); %>

StringBean.jsp

<HTML>
<HEAD>
<TITLE>Using JavaBeans with JSP</TITLE>
<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
<TR><TH CLASS="TITLE">
Using JavaBeans with JSP</TABLE>
<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

Initial value (from jsp:getProperty):
<I><jsp:getProperty name="stringBean"
property="message" /></I>
Initial value (from JSP expression):
<I><%= stringBean.getMessage() %></I>
<jsp:setProperty name="stringBean"
property="message"
value="Best string bean: Fortex" />
Value after setting property with jsp:setProperty:
<I><jsp:getProperty name="stringBean"
property="message" /></I>
<% stringBean.setMessage("My favorite: Kentucky Wonder"); %>
Value after setting property with scriptlet:
<I><%= stringBean.getMessage() %></I>

</BODY></HTML>

	UNIT IV: Including files and applets in JSP pages and Using Java Beans components in JSP documents
	Syntax:
	Example
	Syntax:
	Output:
	Including applets for java plug-in
	WHY USE BEANS?
	WHAT ARE BEANS?
	USING BEANS: BASIC TASK:
	<jsp:useBean id="beanName" class="package.Class" />
	<jsp:getProperty name="beanName" property="propertyName" />
	<jsp:setProperty name="beanName" property="propertyName" value="propertyValue" />
	<jsp:useBean id="book1" class="coreservlets.Book" />
	Installing Bean Classes
	EXAMPLE: STRINGBEAN
	String property called message.
	StringBean.jsp

