
BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 1

request.getParameter("Param1"); and

request.getParameter("param1");

UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Reading Form Data from Servlet, Example: Reading three parameter, Example: Reading all

parameter, Filtering String for HTML –specific character, Benefits of cookies, Some problem

with cookies, Sending and receiving cookies, Using cooking to detect first time visitors, Using

cookies attributes, The need for session tracking, Session tracking basics, Session tracking API,

Browser session Vs server sessions, A Servlets that shows per client access counts

READING FORM DATA FROM SERVLET:

Reading Form Data from Servlet is very easy. Servlets provides features that all data of form is

parsed automatically.

For reading or handling form data servlet provides following functions:

1. For Reading Single Values: getParameter

For reading single value from HTML Form servlets provides request.getParameter.

request.getParameterValues is also used if the parameter value appears more than once,

or you can call request.getParameterNames if you want a complete list of all parameters

in the current request.

Parameter names are case sensitive, for example:

are considered as different.

2. For Reading Multiple Values: getParameterValues:

If the same parameter name might appear in the form data more than once, for that you can

use getParameterValues (which returns an array of strings) instead of

getParameter (which returns a single string corresponding to the first occurrence

of the parameter).

The return value of getParameterValues is null for nonexistent parameter names and is a

one-element array when the parameter has only a single value.

For multiselectable list boxes (i.e., HTML SELECT elements

with the MULTIPLE attribute set;) you have to use getParameterValues function.

3. Looking Up Parameter Names:getParameterNames and getParameterMap

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 2

String firstNameWrongEncoding = request.getParameter("firstName");

String firstName =new String(firstNameWrongEncoding.getBytes(), "Shift_JIS");

While reading HTML form, if the parameters names are not know them

getParameterNames and getParameterMap can be used. It is very useful to get a full list

of parameter names if the parameter names are not known.

Use getParameterNames to get this list in the form of an Enumeration, each entry of which

can be cast to a String and used in a getParameter or getParameterValues call.

4. Reading Raw Form Data and Parsing Uploaded Files: getReader or getInputStream:

Rather than reading individual form parameters, you can access the query data directly by

calling getReader or getInputStream on the HttpServletRequest and then using that stream

to parse the raw input.

Note, however, that if you read the data in this manner, it is not guaranteed to be available

with getParameter.

These functions are also used for reading uploaded files:

5. Reading Input in Multiple Character Sets: setCharacterEncoding

By default, request.getParameter reads input using the server’s current character set. To

change this default, we can use the setCharacterEncoding (For reading character in multiple

language like Marathi, English, Japanese etc.) method of ServletRequest.

For example, to allow input in either English or Japanese, you can use the following.

request.setCharacterEncoding("JISAutoDetect");

String firstName = request.getParameter("firstName");

If input what to read the character in more than one character set? In such a case, you

cannot simply call setCharacterEncoding with a normal character set name.

For that, here is an example that converts a parameter to Japanese:

EXAMPLE: READING THREE PARAMETERS:

Following Programs presents a simple servlet called ThreeParams that reads form parameters

named param1, param2, and param3 and places their values in a bulleted list:

HTML Form for Reading from Servlets:

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 3

<HTML><HEAD><TITLE>Collecting Three Parameters</TITLE></HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="servlet/ThreeParams" method =”post”>

First Parameter: <INPUT TYPE="TEXT" NAME="param1">

Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

Third Parameter: <INPUT TYPE="TEXT" NAME="param3">

<CENTER><INPUT TYPE="SUBMIT"></CENTER>

</FORM>

</BODY></HTML>

ThreeParamsForm.html

Save the above ThreeParamsForm.html file to location:

C:\apache-tomcat-6.0.10\webapps\ROOT\

Then URL Will Be:

http://localhost/ThreeParamsForm.html

http://localhost/ThreeParamsForm.html

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 4

ThreeParams.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/* Simple servlet that reads three parameters from the form data.*/

public class ThreeParams extends HttpServlet

{

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Reading Three Request Parameters";

String param1=request.getParameter("param1");

String param2=request.getParameter("param2");

String param3=request.getParameter("param3");

out.println("<HTML>" +

"<HEAD><TITLE>" + title + "</TITLE></HEAD>" +

"<BODY BGCOLOR=\"#FDF5E6\">" +

"<H1 ALIGN=\"CENTER\">" + title + "</H1>" +

"" +

"param1: "+ param1+

"param2: "+ param2 +

"param3: "+ param3 +

"" +

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 5

Compile & Copy the .class file of this servlets to:

C:\apache-tomcat-6.0.10\webapps\ROOT\WEB-INF\classes

Then URL Will Be:

http://localhost/servlet/ThreeParams

EXAMPLE: READING ALL PARAMETER:

This example shows how to read all parameter from html form without knowing the names of

parameter that are send to servlet.

First, the servlet looks up all the parameter names with the getParameterNames method of

HttpServletRequest. This method returns an Enumeration that contains the parameter names in

an unspecified order.

Next, the servlet loops down the Enumeration in the standard manner, using hasMoreElements to

determine when to stop and using nextElement to get each parameter name.

"</BODY></HTML>");

}

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

doGet(request, response);

}

}

http://localhost/servlet/ThreeParams

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 6

<HTML>

<HEAD>

<TITLE>Registration </TITLE>

</HEAD>

<BODY>
<H1 align="center">Registration Form </H1>

<FORM action="servlet/AllParams" method="post">

<TABLE border="1" align="center" width="70%">

<TR><TD>Full Name</TD><TD><Input Type="text" name="Name"></TD></TR>

<TR><TD>Address</TD><TD><TEXTAREA name="Address"></TEXTAREA></TD></TR>

<TR><TD>City</TD><TD><SELECT

name="City"><OPTION>Pune</OPTION><OPTION>Mumbai </OPTION><OPTION> Delhi

</OPTION></SELECT></TD></TR>

<TR><TD>Gender</TD><TD> <input type="Radio" name="Gender" value="Male">Male <Input

Type="Radio" name="gender1" value="Female">Female</TD></TR>

<TR><TD>Language Known</TD><TD> <Input Type="checkbox" name="Lang1" value=

"Hindi">Hindi <Input Type="checkbox" name= "Lang2" value="Marathi"> Marathi<Input

nextElement returns an Object, the servlet casts the result to a String and passes that to

getParameter.

The source code for the servlet & corresponding html form is shown as follows:

Reg.html

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 7

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class AllParams extends HttpServlet

{

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

Save the above Reg.html file to location:

C:\apache-tomcat-6.0.10\webapps\ROOT\

Then URL Will Be:

http://localhost/Reg.html

AllParams.java

Type="checkbox" name="Lang3" value= "English"> English</TD></TR>

<TR><TD>Mobile No.</TD><TD><Input Type="text" name="mobile"></TD></TR>

<TR><TD>E-mail Address</TD><TD><Input Type="text" name="email"></TD></TR>

<TR><TD></TD><TD><Input Type="submit" value="Submit"></TD></TR>

<TR><TD></TD><TD><Input Type="Button" value="Cancel"></TD></TR>

</TABLE>

</FORM>

</BODY>

http://localhost/Reg.html

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 8

Compile & Copy the .class file of this servlets to:

C:\apache-tomcat-6.0.10\webapps\ROOT\WEB-INF\classes

Then URL Will Be:

http://localhost/servlet/AllParams

PrintWriter out = response.getWriter();

String title = "Reading All Request Parameters";

out.println("<table border=1 align=center width=700>");

out.println("<tr><td>Paramter Name</td><td>Paramter Value</td></tr>");

Enumeration paramNames = request.getParameterNames();

while(paramNames.hasMoreElements())

{

String paramName = (String)paramNames.nextElement();

String paramValue =request.getParameter(paramName);

out.print("<TR><TD>" + paramName + "</TD>");

out.print("<TD>" + paramValue + "</TD></tr>");

}

out.println("</table>");

}

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

doGet(request, response);

}

}

http://localhost/servlet/AllParams

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 9

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 10

<html>

<head>

<title>Enter Program in C</title>

FILTERING STRINGS FOR HTML-SPECIFIC CHARACTERS:

When Generating HTML that contain characters like <, >, “(Double Quote), and & (ampersand)

using servlet, we have to simply use <, >, " and & respectively because these are the

standard HTML character. These are processed by web browser to interpret or display the result of

those characters.

If we have not made such substitutions or changes, results will not be displayed properly.

In most cases, it is easy to note the special characters and use the standard HTML replacements

manually.

However, there are two cases in which it is not so easy to make this substitution manually.

The first case in which manual conversion is difficult, when the string is derived from a program or

another source in which it is already in some standard format.

Going through manually and changing all the special characters can be tedious in such a case, but

forgetting to convert even one special character can result in your Web page having missing or

improperly formatted sections.

The second case in which manual conversion fails is when the string is derived from HTML form

data.

Here, the conversion must be performed at runtime, since the query data or data given by user is

not known at compile time. If the user accidentally or deliberately enters HTML tags, the generated

Web page will contain specious HTML tags and can have completely unpredictable results (the

HTML specification tells browsers what to do with legal HTML; it says nothing about what they

should do with HTML containing illegal syntax).

If you read request parameters and display their values in the resultant page, you should filter out

the special HTML characters.

For Filtering & replacing character for HTML Specific Character we have to use StringBuffer class

in java.

Following Program Demonstrate Reading string from HTML form that may contains HTML Specific

Character & filtering these character to display proper output.

StringFilter.htm

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 11

</head>

<body>

<form method="POST" action="servlet/StringFilter">

<div align="center">

<center>

<h1>Enter Program in C/C++ or HTML for Filtering HTML Specific Character</h1>

<table border="1" width="70%">

<tr>

<td width="100%">

<p align="center">Submit Your Program Here..</td>

</tr>

<tr>

<td width="100%">

<p align="center"><textarea rows="11" name="S1" cols="70"></textarea></td>

</tr>

<tr>

<td width="100%">

<p align="center"><input type="submit" value="Submit" name="B1"><input type="reset"

value="Reset" name="B2"></td>

</tr>

</table>

</center>

</div>

</form>

</body>

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 12

StringFilter.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class StringFilter extends HttpServlet

{

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>String Filtering</title>");

out.println("</head>");

out.println("<body>");

out.println("<h1>String Filtering Servlet for Html Specific Character </h1>");

String str=request.getParameter("S1");

StringBuffer br=new StringBuffer(str.length());

int len =str.length();

for(int i=0;i<len;i++)

{

char ch=(char)str.charAt(i);

switch(ch)

</html>

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 13

{

case '<':

br.append("<");

break;

case '>':

br.append(">");

break;

case '"':

br.append(""");

break;

case '&':

br.append("&");

break;

default:

br.append(ch);

}

}

out.println(br);

out.println("</body>");

out.println("</html>");

}

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException

{

doGet(request,response);

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 14

}

}

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 15

BENEFITS OF COOKIES

Cookies are small bits of textual information that a Web server sends to a browser
and that the browser later returns unchanged when visiting the same Web site or
domain.

By letting the server read information it sent the client previously, the site can
provide visitors with a number of conveniences such as presenting the site the way
the visitor previously customized it or letting identifiable visitors in without their
having to reenter a password.

There are four typical ways in which cookies can add value to your site. These are:

1. Identifying a user during an e-commerce session. Many online shopping sites
provide facility to use a shopping cart or basket to put item into it, and then
continue shopping.
HTTP connection is usually closed after each page is sent, when a user selects a
new item to add to the cart, how does the store know that it is the same user
who put the previous item in the cart? This problem can be solved using cookies.

Cookies create a small file on user’s machine & stores are the items selected by
user & then can be accessed from any page of website.

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 16

2. Remembering usernames and passwords. Cookies let a user log in to a site
automatically, providing a significant convenience for users of unshared
computers.

Many large sites require you to register to use their services, but it is
inconvenient to remember and enter the username and password each time you
visit. Cookies are a good alternative for low-security sites. When a user registers,
a cookie containing a unique user ID is sent to him. When the client reconnects at
a later date, the user ID is returned automatically, the server looks it up,
determines it belongs to a registered user that chose auto-login, and permits
access without an explicit username and password.
The site might also store the user’s address, credit card number, and so forth in a
database and use the user ID from the cookie as the key to retrieve the data. This
approach prevents the user from having to reenter the data each time.

3. Customizing sites. Sites can use cookies to remember user preferences.

Many sites let you customize the look of the main page. They might let you pick
which weather report you want to see, what stock symbols should be displayed,
what sports results you care about (yes, the Orioles are still losing), how search
results should be displayed, and so on. Since it would be inconvenient for you to
have to set up your page each time you visit their site, they use cookies to
remember what you wanted.
For simple settings, the site could accomplish this customization by storing the
page settings directly in the cookies.

4. Focusing advertising. Cookies let the site remember which topics interest
certain users and show advertisements relevant to those interests.
With cookies, we can identify user interests by remembering user previous
searches. This approach enables you to show directed ads on visits to users.

SOME PROBLEMS WITH COOKIES:

Providing convenience to the user and added value to the site owner is the purpose behind
cookies. Cookies are not a serious security problem. Cookies are never interpreted or
executed in any way and thus cannot be used to insert viruses or attack your system. And
browsers generally only accept 20 cookies per site and 300 cookies total, and since
browsers can limit each cookie to 4 kilobytes, cookies cannot be used to fill up someone’s
disk or launch other denial-of-service attacks.
But using Cookies is difficult to secure your privacy.
First, some people don’t like the fact that search engines can remember what they
previously searched for.
A second privacy problem occurs when sites depends on cookies for overly sensitive or
important data. For example, some of the big online bookstores use cookies to remember
you registration information and let you order without reentering much of your personal

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 17

information. In this case if someone using your computer, all your important information is
known to him.

Because of that we need to remember following points while using Cookies:

1. Due to real and perceived privacy problems, some users turn off cookies. So, even
when you use cookies to give added value to a site, whenever possible your site
shouldn’t depend on them.

2. You should be careful not to use cookies for particularly sensitive information, since
this would open users up to risks if somebody accessed the user’s computer or
cookie files.

3. Cookies can be deleted.

SENDING AND RECEIVING COOKIES

To send cookies to the client, a servlet should use the Cookie constructor to create one or
more cookies with specified names and values, set any optional attributes with
cookie.setXxx, and insert the cookies into the HTTP response headers with
response.addCookie.

To read incoming cookies, a servlet should call request.getCookies, which returns an
array of Cookie objects corresponding to the cookies the browser has associated with your
site (null if there are no cookies in the request).
The servlet should then loop down this array calling getName on each cookie until it finds
the one whose name matches the name it was searching for, then call getValue on that
Cookie to see the value associated with the name.

Sending Cookies to the Client:

Sending cookies to the client involves three steps:

1. Creating a Cookie object. You call the Cookie constructor with a cookie name and a

cookie value, both of which are strings.
Neither the name nor the value should contain white space or any of the following
characters: [] () = , " / ? @ : ;
For example, to create a cookie named userID with a value a1234, you would use the
following.
Cookie c = new Cookie ("userID", "a1234");

2. Setting the maximum age. If you want the browser to store the cookie on disk

instead of just keeping it in memory, you use setMaxAge to specify how long (in
seconds) the cookie should be valid.
If you create a cookie and send it to the browser, by default a cookie that is stored in
the browser’s memory and deleted when the user quits the browser. If you want the
browser to store the cookie on disk, use setMaxAge with a time in seconds, as below.

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 18

Cookie userCookie = new Cookie("user", "uid1234");
userCookie.setMaxAge(60*60*24*365); // Store cookie for 1 year
response.addCookie(userCookie);

c.setMaxAge(60*60*24*7); // One week

3. Placing the Cookie into the HTTP response headers.
You use response.addCookie to accomplish this.
To send the cookie, use addCookie method of HttpServletResponse as follows:

Reading Cookies from the Client:

To read the cookies that come back from the client, you should perform the following two
tasks,

1. Call request.getCookies.
To obtain the cookies that were sent by the browser, you call getCookies on the
HttpServletRequest.
This call returns an array of Cookie objects corresponding to the values that came in
on the Cookie.
If the request contains no cookies, getCookies should return null.

Cookie[] cookies = request.getCookies();

2. Loop Down the Cookie Array
Loop down the array, calling getName on each one until you find the cookie of
interest. You then typically call getValue and use the value as per your requirement.
Remember that cookies are specific to your host (or domain), not your servlet (or
JSP page). So, although your servlet might send a single cookie, you could get many
irrelevant cookies back. Once you find the cookie of interest, you typically call
getValue on it and finish with some processing specific to the resultant value.

For example:

String cookieName = "userID";
Cookie[] cookies = request.getCookies();
if (cookies != null)
{
for(int i=0; i<cookies.length; i++)
{
Cookie cookie = cookies[i];
if (cookieName.equals(cookie.getName()))
{
doSomethingWith(cookie.getValue());

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 19

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class RepeatVisitor extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
boolean newuser = true;
Cookie[] cookies = request.getCookies();
if (cookies != null)
{
for(int i=0; i<cookies.length; i++)
{
Cookie c = cookies[i];
if ((c.getName().equals("repeatVisitor")) && (c.getValue().equals("yes")))
{
newuser = false;
break;
}
}
}

USING COOKIES TO DETECT FIRST-TIME VISITORS:

Suppose that, at your site, you want to display an attractive banner to first-time
visitors, telling them to register. But, you don’t want to display the same banner to
return visitors.

A cookie is the perfect way to differentiate first-timers from repeat visitors.

Check for the existence of a uniquely named cookie; if it is there, the client is a
repeat visitor.
If the cookie is not there, the visitor is a newcomer, and you should set the cookie to
detect latter.
Following program uses cookies to detect first time visitors:

RepeatVisitor.java

}
}
}

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 20

First Visit of User

String title;
if (newuser)
{
Cookie returnVisitorCookie =
new Cookie("repeatVisitor", "yes");
returnVisitorCookie.setMaxAge(60*60*24*365); // 1 year
response.addCookie(returnVisitorCookie);
title = "Welcome Aboard";
}
else
{
title = "Welcome Back";
}
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HTML>" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>" +
"<BODY BGCOLOR=\"#FDF5E6\">" +
"<H1 ALIGN=\"CENTER\">" + title + "</H1>" +
"</BODY></HTML>");
}
}

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 21

Second & subsequent visit of user.

USING COOKIE ATTRIBUTES:

For using cookie you can set various characteristics of the cookie by using the following
setXxx methods, where Xxx is the name of the attribute you want to specify.

Each setXxx method has a corresponding getXxx method to retrieve the attribute value.

1. public void setComment(String comment)

public String getComment()

These methods specify or look up a comment associated with the cookie. The
comment is used purely for informational purposes on the server; it is not sent to
the client.

2. public void setDomain(String domainPattern)
public String getDomain()
These methods set or retrieve the domain to which the cookie applies. Normally, the
browser returns cookies only to the exact same hostname that sent the cookies. For
example, cookies sent from a servlet at cocsit.org.in would not normally get
returned by the browser to pages at onlineexam.cocsit.org.in If the site wanted
this to happen, the servlets could specify cookie.setDomain(".cocsit.org.in ").

3. public void setMaxAge(int lifetime)
public int getMaxAge()
These methods tell how much time (in seconds) should elapse before the cookie
expires. A negative value, which is the default, indicates that the cookie will last only
for the current browsing session (i.e., until the user quits the browser) and will not
be stored on disk.

4. public String getName()

The getName method retrieves the name of the cookie. The name and the value are
the two pieces you handle in web pages. The name is supplied to the Cookie
constructor, there is no setName method; you cannot change the name once the
cookie is created.

5. public void setPath(String path)
public String getPath()

These methods set or get the path to which the cookie applies. If you don’t specify a
path, the browser returns the cookie only to URLs in or below the directory
containing the page that sent the cookie.
To specify that a cookie apply to all URLs on your site, use
cookie.setPath("/").

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 22

6. public void setSecure(boolean secureFlag)
public boolean getSecure()
This pair of methods sets or gets the boolean value indicating whether the cookie
should only be sent over encrypted (i.e., SSL) connections. The default
is false; the cookie should apply to all connections.

7. public void setValue(String cookieValue)

public String getValue()

The setValue method specifies the value associated with the cookie; getValue looks
it up.
The cookie value is supplied to the Cookie constructor, setValue is typically reserved
for cases when you change the values of incoming cookies and then send them back
out.

THE NEED FOR SESSION TRACKING:

Session is a time span between user login in and logout on a site or time span
between the sites started in browsers & closes the browser.

HTTP is a “stateless” protocol: each time a client retrieves a Web page, the client
opens a separate connection to the Web server and the server does not
automatically maintain related information about the client. There is no built-in
support for maintaining related information. This lack of context causes a
number of difficulties. For example, when clients at an online store add an item
to their shopping carts, how does the server know what’s already in the carts?
Similarly, when clients decide to proceed to checkout, how can the server
determine which previously created shopping carts are theirs?

There are three typical solutions to this problem: cookies, URL rewriting, and
hidden form fields.
Cookies
You can use cookies to store an ID for a shopping session; with each subsequent
connection, you can look up the current session ID and then use that ID to
extract information about that session from a lookup table on the server
machine. So, there would really be two tables: one that associates session IDs
with user tables, and the user tables themselves that store user-specific data.

Using cookies in this manner is an excellent solution and is the most widely used
approach for session handling, but for following reason session tracking is
needed:

 Extracting the cookie that stores the session identifier from the other
cookies.

 Determining when idle sessions have expired, and reclaiming them.

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 23

 Generating the unique session identifiers.
URL Rewriting

The client appends or attaches some extra data on the end of each URL. That
data identifies the session, and the server associates that identifier with user-
specific data it has stored.
For example, with http://localhost/path/file.html;jsessionid=a1234, the session
identifier is attached as jsessionid=a1234, so a1234 is the ID that uniquely
identifies the table of data associated with that user.

URL rewriting is a moderately good solution for session tracking and even has
the advantage that it works when browsers don’t support cookies or when the
user has disabled them. However, if you implement session tracking yourself,
URL rewriting has the same drawback as do cookies, namely, that the server-side
program has a lot of straightforward but tedious processing to do.

Hidden Form Fields
HTML forms can have an entry that looks like the following:
<INPUT TYPE="HIDDEN" NAME="session" VALUE="a1234">
This entry means that, when the form is submitted, the specified name and value
are automatically included in the GET or POST data. This hidden field can be
used to store information about the session but has the major disadvantage that
it only works if every page is dynamically generated by a form submission.
Clicking on a regular
(<A HREF...>) hypertext link does not result in a form submission, so hidden
form fields cannot support general session tracking, only tracking within a
specific series of operations such as checking out at a store.

Session Tracking in Servlets
Servlets provide an outstanding session-tracking solution: the HttpSession API.
This high-level interface is built on top of cookies or URL rewriting. All servers
are required to support session tracking with cookies, and most have a setting
by which you can globally switch to URL rewriting.

SESSION TRACKING BASICS:

Using sessions in servlets involves four basic steps:
1. Accessing the session object associated with the current request. Call

request.getSession to get an HttpSession object, which is a simple table for
storing user-specific data.

You look up the HttpSession object by calling the getSession method of
HttpServletRequest, as below.
HttpSession session = request.getSession();

http://localhost/path/file.html%3Bjsessionid%3Da1234

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 24

HttpSession session = request.getSession();
SomeClass value =
(SomeClass)session.getAttribute("someIdentifier");
if (value == null) { // No such object already in session
value = new SomeClass(...);
session.setAttribute("someIdentifier", value);
}
doSomethingWith(value);

Behind the scenes, the system extracts a user ID from a cookie or attached
URL data, then uses that ID as a key into a table of previously created
HttpSession objects. But this is all done transparently to the programmer:
you just call getSession.

2. Looking up information associated with a session. Call getAttribute on the

HttpSession object, cast the return value to the appropriate type, and check
whether the result is null.
You can use session.getAttribute("key") to look up a previously stored
value. The return type is Object, so you must do a typecast to whatever more
specific type of data was associated with that attribute name in the session.
The return value is null if there is no such attribute, so you need to check for
null before calling methods on objects associated with sessions.

Example:

3. Storing information in a session. To specify information, use setAttribute.
with a key and a value.

HttpSession session = request.getSession();
SomeClass value =
(SomeClass)session.getAttribute("someIdentifier");
if (value == null) { // No such object already in session
value = new SomeClass(...);
session.setAttribute("someIdentifier", value);
}
doSomethingWith(value);

4. Discarding session data. Call removeAttribute to discard a specific value. Call
invalidate to discard an entire session. Call logout to log the client out of the
Web server and invalidate all sessions associated with that user.

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 25

THE SESSION-TRACKING API:

Session-Tracking API (Application programming Interface) is a series or
summary of the methods available in the HttpSession class used to perform
operation of session values as per the requirement.

These API Are as follows:

1. public Object getAttribute(String name)
This method extracts a previously stored value from a session object. It returns
null if no value is associated with the given name.

2. public Enumeration getAttributeNames()
This method returns the names of all attributes in the session.

3. public void setAttribute(String name, Object value)
This method set a value with a name.
4. public void removeAttribute(String name)
This method removes any values associated with the designated name.
5. public void invalidate()
This method invalidates or cancels the session and unbinds all objects associated
with it.
6. public void logout()
This method logs the client out of the Web server and invalidates or cancels all
sessions associated with that client. The scope of the logout is the same as the
scope of the authentication.

7. public String getId()
This method returns the unique identifier generated for each session. It is useful
for debugging or logging or, in rare cases, for programmatically moving values
out of memory and into a database.

8. public boolean isNew()
This method returns true if the client (browser) has never seen the session,
usually because the session was just created rather than being referenced by an
incoming client request. It returns false for preexisting sessions.

9. public long getCreationTime()
This method returns the time in milliseconds since midnight, January 1, 1970
(GMT) at which the session was first built. To get a value useful for printing, pass
the value to the Date constructor.

10. public long getLastAccessedTime()
This method returns the time in milliseconds since midnight, January 1, 1970

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 26

(GMT) at which the session was last accessed by the client.

11. public int getMaxInactiveInterval()
public void setMaxInactiveInterval(int seconds)

These methods get or set the length of time, in seconds, that a session should go
without access before being automatically invalidated or canceled. A negative
value specifies that the session should never time out.

BROWSER SESSION VS SERVER SESSIONS:

Browser session is a session created by browser of client machine. Server
session is a session created by server. In Server session the session
information are stored at server side.

By default, session-tracking is based on cookies that are stored in the browser’s
memory, not written to disk. Thus, unless the servlet explicitly reads the
incoming cookie, sets the maximum age and path, and sends it back out, quitting
the browser results in the session being broken: the client will not be able to
access the session again because it is browser session. The problem, however, is
that the server does not know that the browser was closed and thus the server
has to maintain the session in memory until the inactive interval has been
exceeded so it is called server session.

(Consider a physical shopping trip to a Wal-Mart store. You browse around and
put some items in a physical shopping cart, then leave that shopping cart at the
end of an aisle while you look for another item. A clerk walks up and sees the
shopping cart.

Can he reshelf the items in it? No—you are probably still shopping and will come
back for the cart soon. What if you realize that you have lost your wallet, so you
get in your car and drive home? Can the clerk reshelf the items in your shopping
cart now? Again, no—the clerk presumably does not know that you have left the
store.

So, what can the clerk do? He can keep an eye on the cart, and if nobody has
touched it for some period of time, he can then conclude that it is abandoned and
take the items out of it. The only exception is if you brought the cart to him and
said “I’m sorry, I left my wallet at home, so I have to leave.”)

If you quit your browser, the session will effectively break. But the server does
not know that you quit your browser. So, the server still has to wait for a period
of time to see if the session has been timeout.

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 27

Sessions automatically become inactive when the amount of time between client
accesses exceeds the interval specified by getMaxInactiveInterval. When this
happens, objects stored in the HttpSession object are removed.

A SERVLET THAT SHOWS PER-CLIENT ACCESS COUNTS:

Following Programs shows a simple servlet that shows basic information about
the client’s session. When the client connects, the servlet uses request.getSession
either to retrieve the existing session or, if there is no session, to create a new
one. The servlet then looks for an attribute called accessCount of type Integer. If
it cannot find incremented and associated with the session by setAttribute.

Finally, the servlet prints a small HTML table showing information about the
session.

ShowSession.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class ShowSession extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
HttpSession session = request.getSession();

String heading;
Integer accessCount =(Integer)session.getAttribute("accessCount");
if (accessCount == null)
{

accessCount = new Integer(0);
heading = "Welcome, Newcomer";

}
else
{

heading = "Welcome Back";
accessCount = new Integer(accessCount.intValue() + 1);

}

session.setAttribute("accessCount", accessCount);

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 28

PrintWriter out = response.getWriter();
String title = "Session Tracking Example";
String docType =
out.println("<HTML>" +
"<HEAD><TITLE>" + title + "</TITLE></HEAD>" +
"<BODY BGCOLOR=\"#FDF5E6\">" +
"<CENTER>" +
"<H1>" + heading + "</H1>" +
"<H2>Information on Your Session:</H2>" +
"<TABLE BORDER=1>" +
"<TR BGCOLOR=\"#FFAD00\">" +
"<TH>Info Type<TH>Value" +
"<TR>" +
"<TD>ID" +
"<TD>" + session.getId() +
"<TR>\n" +
"<TD>Creation Time" +
"<TD>" + new Date (session.getCreationTime()) +
"<TR>" +
"<TD>Time of Last Access" +
"<TD>" + new Date (session.getLastAccessedTime()) +
"<TR>" +
"<TD>Number of Previous Accesses" +
"<TD>" + accessCount +
"</TABLE> +
"</CENTER></BODY></HTML>");
}
}

http://localhost/servlet/ShowSession

http://localhost/servlet/ShowSession

BSC.(CS).TY-S5.CC.3 Java Server Pages, Servlets & Struts (CBCS Pattern)
UNIT II: Handling Client Request: Form DATA, Cookies and Session Tracking

Prepared By: Ms. S.V. Kale (DSCL) Page 29

