
PAPER NO-XII

SOFTWARE ENGINEERING

BSC-THIRD YEAR

PRESENTED BY - PROF. KUTWAD A.G.

NATURE OF SOFTWARE:

Software is:

(1) instructions (computer programs) that when executed provide desired

features, function, and performance;

(2) data structures that enable the programs to adequately manipulate

information, and

(3) document that describes the operation and use of the programs.

Characteristics of software

➢ Software is developed or engineered, it is not manufactured in the

classical sense.

➢ Software does not wear out. However it deteriorates due to change.

➢ Software is custom built rather than assembling existing components. -

Although the industry is moving towards component based construction,

most software continues to be custom built

THE CHANGING NATURE OF SOFTWARE

Seven Broad Categories of software are challenges for software engineers

• System software- System software is a collection of programs

written to service other programs. System software: such as

compilers, editors, file management utilities.

• Application software: stand-alone programs for specific needs. This

software are used to controls business needs. Ex: Transaction

processing.

• Artificial intelligence software- Artificial intelligence (AI) software

makes use of nonnumeric algorithms to solve complex problems.

Application within this area include robotics, pattern recognition,

game playing.

• Engineering and scientific software-Engineering and

scientific software have been characterized by "number

crunching" algorithm.

• Embedded software resides within a product or system.

(key pad control of a microwave oven, digital function of

dashboard display in a car)

• Product-line software focus on a limited marketplace to

address mass consumer market. (word processing,

graphics, database management)

• WebApps (Web applications) network centric software.

As web 2.0 emerges, more sophisticated computing

environments is supported integrated with remote

database and business applications.

SOFTWARE ENGINEERING

• [Software engineering is] the establishment and use of
sound engineering principles in order to obtain
economically software that is reliable and works
efficiently on real machines.

• Or
• The IEEE definition:

• Software Engineering: (1) The application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software;
that is, the application of engineering to software.

Software engineering - Layered technology

• Software engineering is a fully layered technology.

• To develop a software, we need to go from one layer to
another.

• All these layers are related to each other and each layer
demands the fulfillment of the previous layer.

• The layered technology consists of:

1. Quality focus
The characteristics of good quality software are:

• Correctness of the functions required to be performed by the software.
• Integrity i.e. providing security so that the unauthorized user cannot

access information or data.
• Usability i.e. the efforts required to use or operate the software.
• 2. Process
• It is the base layer or foundation layer for the software engineering. It

covers all activities, actions and tasks required to be carried out for
software development.

• 3. Methods
• It provides the technical way to implement the software. It includes

collection of tasks starting from communication, requirement analysis,
analysis and design modelling, program construction, testing and
support.

• 4. Tools-The software engineering tool is an automated support for the
software development. The tools are integrated i.e the information
created by one tool can be used by the other tool.

•

THE SOFTWARE PROCESS
• A process is a collection of activities, actions, and tasks that are performed when

some work product is to be created. An activity strives to achieve a broad
objective with which software engineering is to be applied. An action
encompasses a set of tasks that produce a major work .A task focuses on a small,
but well-defined objective that produces a tangible outcome.

• A generic process framework for software engineering encompasses five
activities:

• Communication- Before any technical work can commence, it is critically
important to communicate and collaborate with the customer (and other
stakeholders11 The intent is to understand stakeholders’ objectives for the
project and to gather requirements that help define software features and
functions.

• Planning-Any complicated journey can be simplified if a map exists. The map—
called a software project plan—defines the software engineering work by
describing the technical tasks to be conducted, the risks that are likely, the
resources that will be required, the work products to be produced, and a work
schedule.

• Modeling-A software engineer creating models to better understand software
requirements and the design that will achieve those requirements.

• Construction-This activity combines code generation (either manual or
automated) and the testing that is required to uncover errors in the code.

• Deployment-The software (as a complete entity or as a partially completed
increment) is delivered to the customer who evaluates the delivered product
and provides feedback based on the evaluation.

•

•

• Software engineering process framework activities are complemented
by a number of umbrella activities. Typical umbrella activities include:

• Software project tracking and control—allows the software team to
assess progress against the project plan and take any necessary action
to maintain the schedule.

• Risk management—assesses risks that may affect the outcome of the
project or the quality of the product.

• Software quality assurance—defines and conducts the activities
required to ensure software quality.

• Technical reviews—assesses software engineering work products in an
effort to uncover and remove errors before they are propagated to the
next activity.

• Measurement—defines and collects process, project, and product
measures that assist the team in delivering software that meets
stakeholders’ needs; can be used in conjunction with all other
framework and umbrella activities.

• Software configuration management—manages the effects of change
throughout the software process.

• Reusability management—defines criteria for work product reuse
(including software components) and establishes mechanisms to
achieve reusable components.

• Work product preparation and production—encompasses the activities
required to create work products such as models, documents, logs,
forms, and lists.

SOFTWARE ENGINEE$RING PRACTICES

• The Essence of Practice

• 1. Understand the problem

• 2. Plan a solution

• 3. Carry out the plan

• 4. Examine the result for accuracy

Software Engineering Principles:

• The Reason It All Exists- A software system exists for one reason:
to provide value to its users. All decisions should be made with
this in mind. Before specifying a system requirement, before
noting a piece of system functionality, before determining the
hardware platforms or development processes, ask yourself
questions such as: “Does this add real value to the system?” If the
answer is “no,” don’t do it. All other principles support this one.

• The Second Principle: KISS (Keep It Simple, Stupid!) - All design
should be as simple as possible, but no simpler. This is not to say
that features, even internal features, should be discarded in the
name of simplicity.

• The Third Principle: Maintain the Vision - A clear vision is
essential to the success of a software Project.

• The Fourth Principle: What You Produce, Others Will Consume –,
Always specify, design, and implement knowing someone else will
have to understand what you are doing. The audience for any
product of software development is potentially large. Specify with an
eye to the users.

• The Fifth Principle: Be Open to the Future - A system with a long
lifetime has more value. these systems must be ready to adapt to
these and other changes. The Sixth Principle: Plan Ahead for Reuse -
Reuse saves time and effort. The reuse of code and designs has been
major benefit of using object-oriented technologies.

• The Seventh principle: Think! - Placing clear, complete thought
before action almost always produces better results. When you think
about something, you are more likely to do it right. You also gain
knowledge about how to do it right again. If you do think about
something and still do it wrong, it becomes a valuable experience

SOFTWARE MYTHS

Software myths—erroneous beliefs about software and the
process that is used to build it—can be traced to the earliest
days of computing.

Today, most knowledgeable software engineering professionals
recognize myths for what they are—misleading attitudes that
have caused serious problems for managers and practitioners
alike. However, old attitudes and habits are difficult to modify,
and remnants of software myths remain.

• 1)Management myths

• 2)Customer myths

• 3)Practitioner myths

Management myths.

Managers with software responsibility, like managers in most
disciplines, are often under pressure to maintain budgets, keep
schedules from slipping, and improve quality.

Myth: We already have a book that’s full of standards and
procedures for building software. Won’t that provide my people
with everything they need to know?

Reality: The book of standards may very well exist, but is it used?
Are software practitioners aware of its existence? Does it reflect
modern software engineering practice? Is it complete? Is it
adaptable? Is it streamlined to improve time-to-delivery while still
maintaining a focus on quality? In many cases, the answer to all of
these questions is “no.”

Customer myths.

A customer who requests computer software may be a person
at the next desk, a technical group down the hall, the
marketing/sales department, or an outside company that has
requested software under contract

Myth: A general statement of objectives is sufficient to begin
writing programs—we can fill in the details later.

Reality: Although a comprehensive and stable statement of
requirements is not always possible, an ambiguous “statement
of objectives” is a recipe for disaster. Unambiguous
requirements (usually derived iteratively) are developed only
through effective and continuous communication between
customer and developer.

Practitioner’s myths.

\ Myths that are still believed by software practitioners have
been fostered by over 50 years of programming culture. During
the early days, programming was viewed as an art form. Old
ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is
done.

Reality: Someone once said that “the sooner you begin ‘writing
code,’ the longer it’ll take you to get done.” Industry data
indicate that between 60 and 80 percent of all effort expended
on software will be expended after it is delivered to the
customer for the first time.

