
JAVA

INTERFACES



Interfaces

� What is an Interface?

� Creating an Interface

� Implementing an Interface

� What is Marker Interface?



Inheritance
� OOP allows you to derive new classes from existing 

classes. This is called inheritance.  

� Inheritance is an important and powerful concept in 
Java.  Every class you define in Java is inherited from 
an existing class. 

�  Sometimes it is necessary to derive a subclass from 
several classes, thus inheriting their data and methods.  
In Java only one parent class is allowed. 

� With interfaces, you can  obtain effect of multiple 
inheritance.



What is an Interface?

� An interface is a classlike construct that contains only 
constants and abstract methods. 

� Cannot be instantiated. Only classes that implements 
interfaces can be instantiated. However, final 
public static variables can be defined to interface 
types.

� Why not just use abstract classes?  Java does not permit 
multiple inheritance  from classes, but permits 
implementation of multiple interfaces.



What is an Interface?
� Protocol for classes that completely separates 

specification/behaviour from implementation.

� One class can implement many interfaces

� One interface can be implemented by many classes 

� By providing the interface keyword, Java allows you 
to fully utilize the  "one interface, multiple methods" 
aspect of polymorphism.



Why an Interface?
� Normally, in order for a method to be called from one 

class to another, both classes need to be  present at 
compile time so the Java compiler can check to ensure 
that the method  signatures are compatible. 

� In a system like this, functionality gets  pushed up 
higher and higher in the class hierarchy so that the 
mechanisms will be  available to more and more 
subclasses. 

� Interfaces are designed to avoid this problem. 
� Interfaces are designed to support dynamic method 

resolution at run time. 



Why an Interface?
� Interfaces are designed to avoid this problem. 
� They disconnect the definition of a method or set of 

methods from the inheritance  hierarchy. 
� Since interfaces are in a different hierarchy from classes, 

it is possible for  classes that are unrelated in terms of the 
class hierarchy to implement the same  interface. 

� This is where the real power of interfaces is realized.



Creating an Interface
File InterfaceName.java:
modifier interface InterfaceName
{ 
  constants declarations;
  methods signatures;
}
Modifier is public or not used.

File ClassName.java:
modifier Class ClassName implements InterfaceName
{
   methods implementation;
}
If  a class implements an interface, it should overrideoverride all
the abstract methods  declared in the interface.



Creating an Interface
public interface MyInterface
{
 public void aMethod1(int i);  // an abstract methods
 public void aMethod2(double a); 
...
 public void aMethodN(); 

}

public Class MyClass implements MyInterface
{
 public void aMethod1(int i) { // implementaion }
 public void aMethod2(double a) { // implementaion }
 ...
 public void aMethodN() { // implementaion }
}



Creating a Multiple Interface
modifier interface InterfaceName1 { 
   methods1 signatures;
}

modifier interface InterfaceName2 { 
   methods2 signatures;
}
...

modifier interface InterfaceNameN { 
   methodsN signatures;
}



Creating a Multiple Interface

If  a class implements a multiple  interfaces, it should
 override all the abstract methods declared in all the
interfaces.

public Class ClassName implements InterfaceName1, 
                InterfaceName2, …, InterfaceNameN 
{
  methods1 implementation;
  methods2 implementation;
  ...
  methodsN implementation;
}



Example of Creating an Interface

// This interface is defined in 

// java.lang package

public interface Comparable

{

  public int compareTo(Object obj);

}



Comparable Circle
public interface Comparable
{
  public int compareTo(Object obj);
}

public Class Circle extends Shape 
                            implements Comparable {
   public int compareTo(Object o) {
      if (getRadius() > ((Circle)o).getRadius())
        return 1;
      else if (getRadius()<((Circle)o).getRadius())
        return -1;
      else 
         return 0; 
   } 
}



Comparable Cylinder
public Class Cylinder extends Circle 

                   implements Comparable {

  public int compareTo(Object o) {

    if(findVolume() > ((Cylinder)o).findVolume())

       return 1;

    else if(findVolume()<((Cylinder)o).findVolume()) 

       return -1;

    else 

      return 0; 

 } 

}



Generic findMax Method
public class Max
{
   // Return the maximum between two objects

   public static Comparable findMax(Comparable ob1,   

                               Comparable ob2)

   {

     if (ob1.compareTo(ob2) > 0)

        return ob1;

     else

        return ob2;

   }

 }



Access via interface reference
� You can declare variables as object references that use an interface 

rather than a class  type. Any instance of any class that implements 

the declared interface can be stored in such a variable. 

     Example:  Comparable circle; 

� When you call a method through one of these references, the 

correct  version will be called based on the actual instance of the 

interface being referred to. 

    Example:  circle = Max.findMax(circle1, circle2);



Using Interface
This is one of the key features of interfaces. 

� The method to be executed is looked up dynamically at 

run time, allowing classes to be created later than the 

code which calls methods on them. 

� The calling code can dispatch through an interface 

without having to know anything about the "callee." 



Using Interface
Objective: Use the findMax() method to find  a 

maximum circle between two circles:

Circle circle1 = new Circle(5);

Circle circle2 = new Circle(10);

Comparable circle = Max.findMax(circle1, circle2);

System.out.println(((Circle)circle).getRadius());

// 10.0

System.out.println(circle.toString());

// [Circle] radius = 10.0



Interfaces vs. Abstract Classes
♦ In an interface, the data must be constants; 
   an abstract class can have all types of data.

♦ Each method in an interface has only a 
signature without implementation; 

♦   An abstract class can have concrete 
methods. An abstract class must contain at 
least one abstract method or inherit from 
another abstract method.



Interfaces vs. Abstract Classes, 
cont.

Since all the methods defined in an interface 
are abstract methods, Java does not require 
you to put the abstract modifier in the 
methods in an interface, but you must put the 
abstract modifier before an abstract 
method in an abstract class.



Interfaces & Classes 

Object Class1

Interface1Interface1_1

Interface1_2

Class2

Interface2_1

Interface2_2

• One interface can inherit another by use of the keyword extends.
   The syntax is the same  as for inheriting classes. 
• When a class implements an interface that inherits another 
  interface, it must provide implementations for all methods
  defined within the interface  inheritance chain. 



Interfaces & Classes, cont.
public Interface1_1 { … }

public Interface1_2 { … }

public Interface2_1 { … }

public Interface2_2 { … }

public Interface1 extends Interface1_1, Interface1_2 

{...}

public abstract Class Class1 implements Interface1 
{... }

public Class Class2 extends Class1 implements 

Interface2_1, Interface2_2 {...} 

Object Class1

Interface1Interface1_1

Interface1_2

Class2

Interface2_1

Interface2_2



Interfaces vs. Absract Classes
♦ A strong is-a relationship that clearly describes a parent-child 
relationship should be modeled using classes. 

 Example: a staff member is a person.

♦ A weak is-a relationship, also known as a-kind-of 
relationship, indicates that  an object possesses a certain 
property. 
 Example:  all strings are comparable, so the String class
  implements the Comparable interface. 

♦ The interface  names are usually adjectives.  You can also use 
interfaces to circumvent single inheritance restriction if multiple 
inheritance is desired. You have to design one as a superclass, 
and the others as interfaces.



The Cloneable Interfaces

public interface Cloneable 
{ 

  }

Marker Interface: An empty interface.

A marker interface does not contain constants 
or methods, but it has a special meaning to the 
Java system. The Java system requires a class 
to implement the Cloneable interface to 
become cloneable. 

 



The Cloneable Interfaces
public Class Circle extends Shape 

                   implements Cloneable {

public Object clone() {
  try {
      return super.clone()
  }
  catch (CloneNotSupportedException ex)  {
       return null;
  }
}
------------------------------------------
Circle c1 = new Circle(1,2,3);

Circle c2 = (Circle)c1.clone();

This is shallow copying with super.clone() method. 
Override the method for deep copying.


	JAVA INTERFACES
	Interfaces
	Inheritance
	What is an Interface?
	Slide 5
	Why an Interface?
	Slide 7
	Creating an Interface
	Slide 9
	Creating a Multiple Interface
	Slide 11
	Example of Creating an Interface
	Comparable Circle
	Comparable Cylinder
	Generic findMax Method
	Access via interface reference
	Using Interface
	Using Interface
	Interfaces vs. Abstract Classes
	Interfaces vs. Abstract Classes, cont.
	Interfaces & Classes
	Interfaces & Classes, cont.
	Interfaces vs. Absract Classes
	The Cloneable Interfaces
	Slide 25

