
Copyright 2006 by Pearson Education 1

Building Java Programs

Chapter 1: Introduction to
Java Programming

Copyright 2006 by Pearson Education 2

Chapter outline
◼ basic Java programs

◼ programs and programming languages

◼ output with println statements

◼ syntax and errors

◼ String literals and escape sequences

◼ procedural decomposition with static methods

◼ structured algorithms

◼ identifiers, keywords, and comments

◼ drawing complex figures

Copyright 2006 by Pearson Education 3

Basic Java programs with
println statements

reading: 1.1 - 1.3

Copyright 2006 by Pearson Education 4

Computer programs
◼ program: A set of instructions

to be carried out by a computer.

◼ program execution: The act of
carrying out the instructions
contained in a program.

◼ programming language: A systematic set of rules
used to describe computations in a format that is
editable by humans.

◼ This textbook teaches programming in a language named Java.

Copyright 2006 by Pearson Education 5

◼ Some influential ones:

◼ FORTRAN

◼ science / engineering

◼ COBOL

◼ business data

◼ LISP

◼ logic and AI

◼ BASIC

◼ a simple language

Languages

Copyright 2006 by Pearson Education 6

Some modern languages
◼ procedural languages: programs are a series of commands

◼ Pascal (1970): designed for education

◼ C (1972): low-level operating systems and device drivers

◼ functional programming: functions map inputs to outputs

◼ Lisp (1958) / Scheme (1975), ML (1973), Haskell (1990)

◼ object-oriented languages: programs use interacting "objects"

◼ Smalltalk (1980): first major object-oriented language

◼ C++ (1985): "object-oriented" improvements to C

◼ successful in industry; used to build major OSes such as Windows

◼ Java (1995): designed for embedded systems, web apps/servers

◼ Runs on many platforms (Windows, Mac, Linux, cell phones...)

◼ The language taught in this textbook

Copyright 2006 by Pearson Education 7

A basic Java program
public class Hello {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

◼ code or source code: The sequence of instructions in a program.

◼ The code in this program instructs the computer to display a message
of Hello, world! on the screen.

◼ output: The messages printed to the user by a program.

◼ console: The text box onto which
output is printed.

◼ Some editors pop up the console as
an external window, and others
contain their own console window.

Copyright 2006 by Pearson Education 8

Compiling/running a program
Before you run your programs, you must compile them.

◼ compiler: Translates a computer program written in
one language into another language.

◼ Java Development Kit includes a Java compiler.

◼ byte code: The Java compiler converts your source code into a
format named byte code that can be executed on many
different kinds of computers.

compile execute

outputsource code
Hello.java

byte code
Hello.class

Copyright 2006 by Pearson Education 9

public class Hello2 {

public static void main(String[] args) {

System.out.println("Hello, world!");

System.out.println();

System.out.println("This program produces");

System.out.println("four lines of output");

}

}

◼ The code in this program instructs the computer to
print four messages on the screen.

◼ Its output:
Hello, world!

This program produces

four lines of output

Another Java program

Copyright 2006 by Pearson Education 10

public class <name> {

public static void main(String[] args) {

<statement>;

<statement>;

...

<statement>;

}

}

◼ Every executable Java program consists of a class
◼ that contains a method named main

◼ that contains the statements (commands) to be executed

Structure of Java programs

Copyright 2006 by Pearson Education 11

Java terminology
◼ class: A module that can contain executable code.

◼ Every program you write will be a class.

◼ statement: An executable command to the computer.

◼ method: A named sequence of statements that can be
executed together to perform a particular action.

◼ A special method named main signifies the code that should be

executed when your program runs.

◼ Your program can have other methods in addition to main.

(seen later)

Copyright 2006 by Pearson Education 12

Syntax
◼ syntax: The set of legal structures and commands that

can be used in a particular programming language.

◼ some Java syntax:
◼ every basic Java statement ends with a semicolon ;

◼ The contents of a class or method occur between { and }

Copyright 2006 by Pearson Education 13

◼ syntax error or compiler error: A problem in the
structure of a program that causes the compiler to fail.
◼ If you type your Java program incorrectly, you may violate

Java's syntax and cause a syntax error.

1 public class Hello {

2 pooblic static void main(String[] args) {

3 System.owt.println("Hello, world!")_

4 }

5 }

Hello.java:2: <identifier> expected

pooblic static void main(String[] args) {

^

Hello.java:5: ';' expected

}

^

2 errors

compiler output:

Syntax errors

Copyright 2006 by Pearson Education 14

◼ Error messages do not always help us understand what is wrong:

Hello.java:2: <identifier> expected

pooblic static void main(String[] args) {

^

◼ We'd have preferred a friendly message such as, "You misspelled public"

◼ The compiler does tell us the line number on which it found the error...
◼ But it is not always the true source of the problem.

1 public class MissingSemicolon {

2 public static void main(String[] args) {

3 System.out.println("A rose by any other name")

4 System.out.println("would smell as sweet");

5 }

6 }

MissingSemicolon.java:4: ';' expected

System.out.println("would smell as sweet");

^

Fixing syntax errors

Copyright 2006 by Pearson Education 15

◼ System.out.println : A statement to instruct the

computer to print a line of output on the console.

◼ pronounced "print-linn"

◼ sometimes called a "println statement" for short

◼ Two ways to use System.out.println :

System.out.println("<Message>");

◼ Prints the given message as a line of text on the console.

System.out.println();

◼ Prints a blank line on the console.

System.out.println

Copyright 2006 by Pearson Education 16

◼ string: A sequence of text characters that can be
printed or manipulated in a program.

◼ sometimes also called a string literal

◼ strings in Java start and end with quotation mark " characters

◼ Examples:

"hello"

"This is a string"

"This, too, is a string. It can be very long!"

Strings and string literals

Copyright 2006 by Pearson Education 17

◼ A string may not span across multiple lines.
"This is not

a legal String."

◼ A string may not contain a " character. (The ' character is okay)
"This is not a "legal" String either."

"This is 'okay' though."

◼ A string can represent certain special characters by preceding
them with a backslash \ (this is called an escape sequence).
◼ \t tab character

◼ \n new line character

◼ \" quotation mark character

◼ \\ backslash character

◼ Example: System.out.println("\\hello\nhow\tare \"you\"?");

◼ Output: \hello

how are "you"?

Details about Strings

Copyright 2006 by Pearson Education 18

◼ What is the output of each of the following println statements?

System.out.println("\ta\tb\tc");

System.out.println("\\\\");

System.out.println("'");

System.out.println("\"\"\"");

System.out.println("C:\nin\the downward spiral");

◼ Write a println statement to produce the following line of output:

/ \ // \\ /// \\\

Questions

Copyright 2006 by Pearson Education 19

◼ Output of each println statement:

a b c

\\

'

"""

C:

in he downward spiral

◼ println statement to produce the line of output:

System.out.println("/ \\ // \\\\ /// \\\\\\");

Answers

Copyright 2006 by Pearson Education 20

◼ What println statements will generate the following output?

This program prints a

quote from the Gettysburg Address.

"Four score and seven years ago,

our 'fore fathers' brought forth on

this continent a new nation."

◼ What println statements will generate the following output?

A "quoted" String is

'much' better if you learn

the rules of "escape sequences."

Also, "" represents an empty String.

Don't forget: use \" instead of " !

'' is not the same as "

Questions

Copyright 2006 by Pearson Education 21

◼ println statements to generate the output:

System.out.println("This program prints a");

System.out.println("quote from the Gettysburg Address.");

System.out.println();

System.out.println("\"Four score and seven years ago,");

System.out.println("our 'fore fathers' brought forth on");

System.out.println("this continent a new nation.\"");

◼ println statements to generate the output:

System.out.println("A \"quoted\" String is");

System.out.println("'much' better if you learn");

System.out.println("the rules of \"escape sequences.\"");

System.out.println();

System.out.println("Also, \"\" represents an empty String.");

System.out.println("Don't forget: use \\\" instead of \" !");

System.out.println("'' is not the same as \"");

Answers

Copyright 2006 by Pearson Education 22

reading: 1.4

Procedural decomposition
using static methods

Copyright 2006 by Pearson Education 23

Algorithms
◼ algorithm: A list of steps for solving a problem.

◼ How does one bake sugar cookies?
(what is the "bake sugar cookies" algorithm?)

◼ Mix the dry ingredients.

◼ Cream the butter and sugar.

◼ Beat in the eggs.

◼ Stir in the dry ingredients.

◼ Set the oven for the appropriate temperature.

◼ Set the timer.

◼ Place the cookies into the oven.

◼ Allow the cookies to bake.

◼ Mix the ingredients for the frosting.

◼ Spread frosting and sprinkles onto the cookies.

◼ ...

Copyright 2006 by Pearson Education 24

Structured algorithms
◼ structured algorithm: One broken down into cohesive tasks.

◼ A structured algorithm for baking sugar cookies:

1. Make the cookie batter.

◼ Mix the dry ingredients.

◼ Cream the butter and sugar.

◼ Beat in the eggs.

◼ Stir in the dry ingredients.

2. Bake the cookies.

◼ Set the oven for the appropriate temperature.

◼ Set the timer.

◼ Place the cookies into the oven.

◼ Allow the cookies to bake.

3. Add frosting and sprinkles.

◼ Mix the ingredients for the frosting.

◼ Spread frosting and sprinkles onto the cookies.

...

Copyright 2006 by Pearson Education 25

◼ How would we bake a double batch of sugar cookies?

Unstructured:
◼ Mix the dry ingredients.

◼ Cream the butter and sugar.

◼ Beat in the eggs.

◼ Stir in the dry ingredients.

◼ Set the oven ...

◼ Set the timer.

◼ Place the first batch of cookies
into the oven.

◼ Allow the cookies to bake.

◼ Set the oven ...

◼ Set the timer.

◼ Place the second batch of
cookies into the oven.

◼ Allow the cookies to bake.

◼ Mix ingredients for frosting.

Structured:
◼ 1. Make the cookie batter.

◼ 2a. Bake the first batch of
cookies.

◼ 2b. Bake the second batch
of cookies.

◼ 3. Add frosting and sprinkles.

◼ Observations about the
structured algorithm:

◼ It is hierarchical, therefore
easier to understand.

◼ Higher-level operations help
eliminate redundancy.

Redundancy in algorithms

Copyright 2006 by Pearson Education 26

A program with redundancy
◼ redundancy: Occurrence of the same sequence of

commands multiple times in a program.

public class TwoMessages {

public static void main(String[] args) {

System.out.println("Now this is the story all about how");

System.out.println("My life got flipped turned upside-down");

System.out.println();

System.out.println("Now this is the story all about how");

System.out.println("My life got flipped turned upside-down");

}

}

Output:

Now this is the story all about how

My life got flipped turned upside-down

Now this is the story all about how

My life got flipped turned upside-down

◼ We print the same messages twice in the program.

Copyright 2006 by Pearson Education 27

Static methods
◼ static method: A group of statements given a name.

◼ procedural decomposition: breaking a problem into methods

◼ using a static method requires two steps:

1. declare it (write down the recipe)

◼ write a group of statements and give it a name

2. call it (cook using the recipe)

◼ tell our program to execute the method

◼ static methods are useful for:

◼ denoting the structure of a larger program in smaller pieces

◼ eliminating redundancy through reuse

Copyright 2006 by Pearson Education 28

◼ Syntax for declaring a static method
(writing down the recipe):

public class <class name> {

public static void <method name> () {

<statement>;

<statement>;

...

<statement>;

}

}

◼ Example:

public static void printWarning() {

System.out.println("This product is known to cause");

System.out.println("cancer in lab rats and humans.");

}

Declaring a static method

Copyright 2006 by Pearson Education 29

Calling a static method
◼ Syntax for calling a static method (cooking using the recipe):

◼ In another method such as main, write:

<method name> ();

◼ Example:

printWarning();

◼ You can call the method multiple times.
printWarning();

printWarning();

Resulting output:
This product is known to cause

cancer in lab rats and humans.

This product is known to cause

cancer in lab rats and humans.

Copyright 2006 by Pearson Education 30

A program w/ static method
public class TwoMessages {

public static void main(String[] args) {

displayMessage();

System.out.println();

displayMessage();

}

public static void displayMessage() {

System.out.println("Now this is the story all about how");

System.out.println("My life got flipped turned upside-down");

}

}

Program's output:

Now this is the story all about how

My life got flipped turned upside-down

Now this is the story all about how

My life got flipped turned upside-down

Copyright 2006 by Pearson Education 31

Methods calling methods
◼ One static method can call another:

public class MethodsExample {
public static void main(String[] args) {

message1();
message2();
System.out.println("Done with main.");

}

public static void message1() {
System.out.println("This is message1.");

}

public static void message2() {
System.out.println("This is message2.");
message1();
System.out.println("Done with message2.");

}
}

◼ Output:
This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

Copyright 2006 by Pearson Education 32

public static void message1() {

System.out.println("This is message1.");

}

public static void message2() {

System.out.println("This is message2.");

message1();

System.out.println("Done with message2.");

}

public static void message1() {

System.out.println("This is message1.");

}

Control flow of methods
◼ When a method is called:

◼ the execution "jumps" into that method,

◼ executes all of its statements, and then

◼ "jumps" back to the statement after the method call.

public class MethodsExample {

public static void main(String[] args) {

message1();

message2();

System.out.println("Done with main.");

}

...

}

Copyright 2006 by Pearson Education 33

When to use static methods
◼ Place statements into a static method if:

◼ The statements are related to each other and

form a part of the program's structure, or

◼ The statements are repeated in the program.

◼ You need not create static methods for:

◼ Individual statements only occurring once in the program.

(A single println in a method does not improve the program.)

◼ Unrelated or weakly related statements.

(Consider splitting the method into two smaller methods.)

◼ Only blank lines.

(Blank println statements can go in the main method.)

Copyright 2006 by Pearson Education 34

◼ Write a program that prints the following output to the console.
Use static methods as appropriate.

I do not like my email spam,

I do not like them, Sam I am!

I do not like them on my screen,

I do not like them to be seen.

I do not like my email spam,

I do not like them, Sam I am!

◼ Write a program that prints the following output to the console.
Use static methods as appropriate.

Lollipop, lollipop

Oh, lolli lolli lolli

Lollipop, lollipop

Oh, lolli lolli lolli

Call my baby lollipop

Static method questions

Copyright 2006 by Pearson Education 35

reading: 1.2

Identifiers, keywords,
and comments

Copyright 2006 by Pearson Education 36

Identifiers
◼ identifier: A name given to a piece of data, method, etc.

◼ Identifiers allow us to refer to an item later in the program.

◼ Identifiers give names to:

◼ classes

◼ methods

◼ variables, constants (seen in Ch. 2)

◼ Conventions for naming in Java:
◼ classes: capitalize each word (ClassName)

◼ methods: capitalize each word after the first (methodName)
(variable names follow the same convention)

◼ constants: all caps, words separated by _ (CONSTANT_NAME)

Copyright 2006 by Pearson Education 37

Details about identifiers
◼ Java identifiers:

◼ first character must a letter or _ or $

◼ following characters can be any of those or a number

◼ identifiers are case-sensitive (name is different from Name)

◼ Example Java identifiers:
◼ legal: susan second_place _myName

TheCure ANSWER_IS_42 $variable

◼ illegal: me+u 49er question?

side-swipe hi there ph.d

jim's 2%milk suzy@yahoo.com

◼ can you explain why each of the above identifiers is not legal?

Copyright 2006 by Pearson Education 38

Keywords
◼ keyword: An identifier that you cannot use because it

already has a reserved meaning in the Java language.

◼ Complete list of Java keywords:
abstract default if private this

boolean do implements protected throw

break double import public throws

byte else instanceof return transient

case extends int short try

catch final interface static void

char finally long strictfp volatile

class float native super while

const for new switch

continue goto package synchronized

◼ You may not use char or while for the name of a class

or method; Java reserves those to mean other things.
◼ You could use CHAR or While, because Java is case-sensitive.

However, this could be confusing and is not recommended.

Copyright 2006 by Pearson Education 39

Comments
◼ comment: A note written in the source code by the

programmer to make the code easier to understand.

◼ Comments are not executed when your program runs.

◼ Most Java editors show your comments with a special color.

◼ Comment, general syntax:
/* <comment text; may span multiple lines> */

or,

// <comment text, on one line>

◼ Examples:
/* A comment goes here. */

/* It can even span

multiple lines. */

// This is a one-line comment.

Copyright 2006 by Pearson Education 40

Using comments
◼ Where to place comments:

◼ at the top of each file (also called a "comment header"),

naming the author and explaining what the program does

◼ at the start of every method, describing its behavior

◼ inside methods, to explain complex pieces of code

(more useful later)

◼ Comments provide important documentation.

◼ Later programs will span hundreds of lines with many methods.

◼ Comments provide a simple description of what each class,

method, etc. is doing.

◼ When multiple programmers work together, comments help one

programmer understand the other's code.

Copyright 2006 by Pearson Education 41

Comments example
/* Suzy Student

CS 101, Fall 2019

This program prints lyrics from my favorite song! */

public class MyFavoriteSong {

/* Runs the overall program to print the song

on the console. */

public static void main(String[] args) {

sing();

// Separate the two verses with a blank line

System.out.println();

sing();

}

// Displays the first verse of the theme song.

public static void sing() {

System.out.println("Now this is the story all about how");

System.out.println("My life got flipped turned upside-down");

}

}

Copyright 2006 by Pearson Education 42

How to comment: methods
◼ Do not describe the syntax/statements in detail.

◼ Instead, provide a short English description of the
observed behavior when the method is run.

◼ Example:
// This method prints the lyrics to the first verse

// of my favorite TV theme song.

// Blank lines separate the parts of the verse.

public static void verse1() {

System.out.println("Now this is the story all about how");

System.out.println("My life got flipped turned upside-down");

System.out.println();

System.out.println("And I'd like to take a minute,");

System.out.println("just sit right there");

System.out.println("I'll tell you how I became the prince");

System.out.println("of a town called Bel-Air");

}

Copyright 2006 by Pearson Education 43

reading: 1.4 - 1.5

Drawing complex figures
using static methods

Copyright 2006 by Pearson Education 44

Static methods question
◼ Write a program to print the following figures. Use

static methods for structure and to reduce redundancy.

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Copyright 2006 by Pearson Education 45

Problem-solving methodology
◼ Some steps we can use to print complex figures:

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

First version of program (unstructured):

◼ Create an empty program with a skeletal header
and main method.

◼ Copy the expected output into it, surrounding
each line with System.out.println syntax.

◼ Run our first version and verify that it produces
the correct output.

Copyright 2006 by Pearson Education 46

Program, version 1
// Author: Suzy Student
// This program prints several assorted figures.
//
public class Figures1 {

public static void main(String[] args) {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

Copyright 2006 by Pearson Education 47

Problem-solving 2

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Second version of program
(structured with redundancy):

◼ Identify the structure of the output.

◼ Divide the main method into several static

methods based on this structure.

Copyright 2006 by Pearson Education 48

Problem-solving 2 answer

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

The structure of the output:

◼ initial "egg" figure

◼ second "teacup" figure

◼ third "stop sign" figure

◼ fourth "hat" figure

This structure can be represented by methods:

◼ drawEgg

◼ drawTeaCup

◼ drawStopSign

◼ drawHat

Copyright 2006 by Pearson Education 49

Program, version 2
// Author: Suzy Student
// Prints several assorted figures, with methods for structure.
//
public class Figures2 {

public static void main(String[] args) {
drawEgg();
drawTeaCup();
drawStopSign();
drawHat();

}

// Draws a figure that vaguely resembles an egg.
public static void drawEgg() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

// Draws a figure that vaguely resembles a teacup.
public static void drawTeaCup() {

System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();

}
...

Copyright 2006 by Pearson Education 50

Program, version 2, cont'd.
...

// Draws a figure that vaguely resembles a stop sign.
public static void drawStopSign() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

// Draws a figure that vaguely resembles a hat.
public static void drawHat() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

Copyright 2006 by Pearson Education 51

Problem-solving 3

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Third version of program
(structured without redundancy):

◼ Identify any redundancy in the output, and further
divide the program into static methods to
eliminate as much redundancy as possible.

◼ Add comments to the program to improve its
readability.

Copyright 2006 by Pearson Education 52

Problem-solving 3 answer

The redundancy in the output:

◼ top half of egg: reused on stop sign, hat

◼ bottom half of egg: reused on teacup, stop sign

◼ divider line: used on teacup, hat

◼ a single line, so making it a method is optional

This redundancy can be fixed by methods:

◼ drawEggTop

◼ drawEggBottom

◼ drawLine (optional)

/ \

/ \

\ /

______/

\ /

______/

+--------+

/ \

/ \

| STOP |

\ /

______/

/ \

/ \

+--------+

Copyright 2006 by Pearson Education 53

Program, version 3
// Author: Suzy Student
// Prints several figures, with methods for structure and redundancy.
//
public class Figures3 {

public static void main(String[] args) {
drawEgg();
drawTeaCup();
drawStopSign();
drawHat();

}

// draws redundant part that looks like the top of an egg
public static void drawEggTop() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");

}

// draws redundant part that looks like the bottom of an egg
public static void drawEggBottom() {

System.out.println("\\ /");
System.out.println(" ______/");

}

...

Copyright 2006 by Pearson Education 54

Program, version 3, cont'd.
...
// Draws a figure that vaguely resembles an egg.
public static void drawEgg() {

drawEggTop();
drawEggBottom();
System.out.println();

}

// Draws a figure that vaguely resembles a teacup.
public static void drawTeaCup() {

drawEggBottom();
System.out.println("+--------+");
System.out.println();

}

// Draws a figure that vaguely resembles a stop sign.
public static void drawStopSign() {

drawEggTop();
System.out.println("| STOP |");
drawEggBottom();
System.out.println();

}

// Draws a figure that vaguely resembles a hat.
public static void drawHat() {

drawEggTop();
System.out.println("+--------+");

}
}

Copyright 2006 by Pearson Education 55

Another example
◼ Write a program to print letters spelling "banana". Use

static methods for structure and to reduce redundancy.
BBBBB
B B
BBBBB
B B
BBBBB

AAAA
A A
AAAAAA
A A

N N
NNN N
N NNN
N N

AAAA
A A
AAAAAA
A A

N N
NNN N
N NNN
N N

AAAA
A A
AAAAAA
A A

