
DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

Unit 04:

Basic Active X Controls:

Command Button:

Command Button control is used to create buttons with a variety of uses on a form. It is

probably the most widely used control. It is used to begin, interrupt, or end a particular process.

A command button is the most basic way to get user input while a program is running. By

clicking a command button, the user requests that a specific action be taken in the program. Or,

in Visual Basic terms, clicking a command button creates an event, which must be processed

in your program. Here are some command buttons that you would typically find in a program:

OK : Accepts a list of options and indicates that the user is ready to proceed.

Cancel : Discards a list of options.

Command Button Properties:

Appearance : Selects 3-D or flat appearance.

Cancel : Allows selection of button with Esc key (only one button on a form can have this

property True).

Caption : String to be displayed on button.

Default : Allows selection of button with Enter key (only one button on a form can have

this property True).

Font : Sets font type, style, size.

Picture : Return/sets a graphic to be displayed in control, if style is set to 1.

Style : Returns/sets the appearance of the control, whether standard (standard windows style)

or graphical (with a custom picture).

Command Button Events:

Click : Event triggered when button is selected either by clicking on it or by pressing the

access key.

Changing Command Button Properties

You can change command button properties (like those of all objects) in two ways:

 By adjusting property settings in the Properties window.

 By changing properties with program code.

Text Box Control Properties:

A Textbox is used to display information entered at design time, by a user at run-time, or

assigned within code. The displayed text may be edited. The Textbox control is one of the

most versatile tools in the Visual Basic toolbox. This control performs two functions:

Displaying output such as operating instructions or the contents of a file on a form.

Receiving text such as names and phone numbers as user input.

How a text box works depends on how you set its properties and how you reference the text

box in your program code.

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

Text Box Properties:

Alignment : Aligns caption within border.

 Following are possible values for

alignment property

 0 – Left Justify

 1 – Right Justify

 2 – Center

Appearance : Selects 3-D or flat

appearance.

BorderStyle : Determines type of border.

 0 – None

 1 – Fixed Single

Font : Sets font type, style, size.

Locked : Determines whether a control

can be edited.

MaxLength : Limits the length of

displayed text (0 value indicates unlimited

length).

MultiLine : Specifies whether text box

displays single line or multiple lines.

ScrollBars : Specifies type of displayed

scroll bar(s).

 0 – None

 1 – Horizontal

 2 – Vertical

 3 – Both

PasswordChar: Hides text with a single

character.

Text : Displayed text.

ToolTipText : Returns/sets the text

displayed when the mouse is paused over

the control.

Text Box Events:

Change : Triggered every time the Text property changes.

GotFocus : Triggered when the user entered the text box.

LostFocus : Triggered when the user leaves the text box. This is a good place to examine the

contents of a text box after editing.

KeyPress : Triggered whenever a key is pressed. Used for key trapping, as seen in last class.

Text Box Methods:

SetFocus : Places the cursor in a specified text box.

Example – 1 (For Practical):

Password Validation

1. Start a new project. The idea of this project is to ask the user to input a password. If

correct, a message box appears to validate the user. If incorrect, other options are provided.

2. Place a two command buttons, a label box, and a text box on your form so it looks

something like this:

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

3. Set the properties of the form and each object.

 Form1: Text1:

BorderStyle 1-Fixed Single FontSize 14

Caption Password Validation FontStyle Regular

Name frmPassword Name txtPassword

 PasswordChar *

 Tag [Original password]

 Text [Blank]

Command1: Command2:

 Caption &Validate Cancel True

 Default True Caption E&xit

 Name cmdValid Name cmdExit

 Label1:

 Alignment 2-Center

 BorderStyle 1-Fixed Single

 Caption Please Enter Your Password:

 FontSize 10

 FontStyle Bold

Your form should now look like this:

 4. Attach the following code to the cmdValid_Click event.

Private Sub cmdValid_Click()

'This procedure checks the input password

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

Dim Response As Integer

If txtPassword.Text = txtPassword.Tag Then

'If correct, display message box

MsgBox "You've passed security!", vbOKOnly + vbExclamation, "Access Granted"

Else

'If incorrect, give option to try again

Response = MsgBox("Incorrect password", vbRetryCancel + vbCritical, "Access

Denied")

If Response = vbRetry Then

txtPassword.SelStart = 0

txtPassword.SelLength = Len(txtPassword.Text)

Else

End

End If

End If

txtPassword.SetFocus

End Sub

This code checks the input password to see if it matches the stored value. If so, it prints an

acceptance message. If incorrect, it displays a message box to that effect and asks the user if

they want to try again. If Yes (Retry), another try is granted. If No (Cancel), the program is

ended. Notice the use of SelLength and SelStart to highlight an incorrect entry. This allows

the user to type right over the incorrect response.

5. Attach the following code to the Form_Activate event.

 Private Sub Form_Activate()

txtPassword.SetFocus

End Sub

6. Attach the following code to the cmdExit_ Click event.

Private Sub cmdExit_Click()

End

End Sub

7. Try running the program. Try both options: input correct password (note it is case

sensitive) and input incorrect password. Save your project. If you have time, define a

constant, TRYMAX = 3, and modify the code to allow the user to have just TRYMAX

attempts to get the correct password. After the final try, inform the user you are logging

him/her off. You‟ll also need a variable that counts the number of tries (make it a Static
variable).

Label Controls:
A label is a control you use to display text that a user can't edit directly. Label, the simplest

control in the Visual Basic toolbox, displays formatted text on a user interface form. Typical

uses for the Label control include:

 Help text

 Program splash screen headings

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

 Formatted output, such as names, times, and dates

 Descriptive labels for other objects, including text boxes and list boxes.

 Label Properties:

Name : Returns the name used in code to identify an object.

Alignment : Aligns caption within border.

 Following are possible values for alignment property

 0 – Left Justify

 1 – Right Justify

 2 – Center

Appearance : Selects 3-D or flat appearance.

AutoSize : If True, the label is resized to fit the text specified by the caption

 property. If False, the label will remain the size defined at design time

 and the text may be clipped.

BackColor : Returns/sets the background color of control.

BackStyle : Indicates whether a background of label is transparent or opaque.

BorderStyle : Determines type of border.

Caption : String to be displayed in box.

Font : Sets font type, style, size.

Enabled : Returns/sets a value that determines whether an object can respond to

 user- generated events.

ForeColor : Returns/sets the foreground color used to display text and graphics in

 control.

Visible : Returns/sets a value that determines whether control is visible or

 hidden.

WordWrap : Works in conjunction with AutoSize property. If AutoSize = True,

WordWrap : True, then the text will wrap and label will expand vertically to fit the

 Caption. If AutoSize = True, WordWrap = False, then the text will not

 wrap and the label expands horizontally to fit the Caption.

 If AutoSize = False, the text will not wrap regardless of WordWrap

 value.

 Label Events:
 Click : Event triggered when user clicks on a label.

DblClick : Event triggered when user double-clicks on a label.

 Creating Labels on a Form
To create a label control on a form, we surely refer to the toolbox window to select the label

icon, shown as capital letter “A”. When the label control is selected, the label can be placed

on a form by creating a rectangle with the mouse, which is held left button clicked. Once the

left button is released, the label of size as the rectangle created is placed on the form.

Creating Labels in Code
You can also set label properties with program code, as shown in the following. The program

codes below, when command1 button is clicked, will set the caption of label1 as “Welcome”

and label2 as “Please enter your name below:”

Private Sub Command1_Click ()

Label1.Caption = "Welcome"

Label2.Caption = "Please enter your name below:"

End Sub

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

Option Buttons

Option buttons provide the capability to make a mutually exclusive choice among a group of

potential candidate choices. Hence, option buttons work as a group, only one of which can

have a True (or selected) value.

Option Button Properties:

Caption : Identifying text next to button.

Font : Sets font type, style, size.

Value : Indicates if selected (True) or not (False). Only one option button in a

 group can be True. One button in each group of option buttons should

 always be initialized to True at design time.

Option Button Events:

Click : Triggered when a button is clicked. Value property is automatically changed by

Visual Basic.

Checkbox Control
Check boxes provide a way to make choices from a list of potential candidates. Some, all, or

none of the choices in a group may be selected. Checkbox displays a list of choices and gives

the user the option to pick multiple items (or none at all) from a list of choices.

 Check Box Properties:
Caption : Identifying text next to box.

Font : Sets font type, style, size.

Value : Indicates if unchecked (0, vbUnchecked),

 Checked (1, vbChecked), or grayed out (2, vbGrayed).

Check Box Events:
Click : Triggered when a box is clicked. Value property is automatically changed by

 Visual Basic.

List Box Control Properties:

A list box displays a list of items from which the user can select one or more items. If the

number of items exceeds the number that can be displayed, a scroll bar is automatically

added.

List Box Properties:
Appearance : Selects 3-D or flat appearance.

List : Array of items in list box.

ListCount : Number of items in list.

ListIndex : The number of the most recently selected item in list. If no item is

 selected, ListIndex = -1.

MultiSelect : Controls how items may be selected (0 -no multiple selection allowed,

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

 1-multiple selection allowed, 2 - group selection allowed).

Selected : Array with elements set equal to True or False, depending on whether

 corresponding list item is selected.

Sorted : True means items are sorted in 'Ascii' order, else items appear in order

 added.

Text : Text of most recently selected item.

List Box Events:
Click : Event triggered when item in list is clicked.

DblClick : Event triggered when item in list is double-clicked.

 Primary way used to process selection.

List Box Methods:
AddItem : Allows you to insert item in list.

Clear : Removes all items from list box.

RemoveItem : Removes item from list box, as identified by index of item to remove.

Examples

lstExample.AddItem "This is an added item" ' adds text string to list

lstExample.Clear ' clears the list box

lstExample.RemoveItem 4 ' removes lstExample.List(4) from list box

Combo Box Control Properties:`

The combo box is similar to the list box. The differences are a combo box includes a text box

on top of a list box and only allows selection of one item. In some cases, the user can type in

an alternate response.

Combo Box Properties:
Combo box properties are nearly identical to those of the list box, with the deletion of the

MultiSelect property and the addition of a Style property.

Appearance : Selects 3-D or flat appearance.

List : Array of items in list box portion.

ListCount : Number of items in list.

ListIndex : The number of the most recently selected item in list. If no item is

 selected, ListIndex = -1.

Sorted : True means items are sorted in 'Ascii' order, else items appear in order

added.

Style : Selects the combo box form.

 Style = 0, Dropdown combo; user can change selection.

 Style = 1, Simple combo; user can change selection.

 Style = 2, Dropdown combo; user cannot change selection.

Text : Text of most recently selected item.

Combo Box Events:

Click : Event triggered when item in list is clicked.

DblClick : Event triggered when item in list is double-clicked.

 Primary way used to process selection.

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

Combo Box Methods:

AddItem : Allows you to insert item in list.

Clear : Removes all items from list box.

RemoveItem : Removes item from list box, as identified by index of item to remove.

Examples

cboExample.AddItem "This is an added item" ' adds text string to list

cboExample.Clear ' clears the combo box

cboExample.RemoveItem 4 ' removes cboExample.List(4) from list box.

Example – 3 (For Practical):
Flight Planner

 1. Start a new project. In this example, you select a destination city, a seat location,

and a meal reference for airline passengers.

 2. Place a list box, two combo boxes, three label boxes and two command buttons on

the form. The form should appear similar to this:

 3. Set the form and object properties:

 Form1: Label1:

 BorderStyle : 1-Fixed Single Caption : Destination City

 Caption : Flight Planner Label2:

 Name : frmFlight Caption : Seat Location

 List1: Label3:

 Name : lstCities Caption : Meal Preference

 Sorted : True

 Combo1: Command1:

 Name : cboSeat Caption : &Assign

 Style : 2-Dropdown List Name : cmdAssign

 Combo2: Command2:

 Name : cboMeal Caption : E&xit

 Style : 1-Simple Name : cmdExit

 Text : [Blank]

 (After setting properties for this combo box, resize it until it is large enough to hold 4 to 5

entries.)

Now, the form should look like this:

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

 4. Attach this code to the Form_Load procedure:

Private Sub Form_Load()

‘Add city names to list box

lstCities.Clear

lstCities.AddItem "Mumbai"

lstCities.AddItem "Delhi"

lstCities.AddItem "Pune"

lstCities.AddItem "Latur"

lstCities.AddItem "Bangalore"

lstCities.AddItem "Aurangabad"

lstCities.AddItem "Nanded"

lstCities.AddItem "Nashik"

lstCities.AddItem "Nagpur"

lstCities.AddItem "Goa"

lstCities.AddItem "Jaipur"

lstCities.AddItem "ShriNagar"

lstCities.AddItem "Agra"

lstCities.AddItem "Kolkata"

lstCities.ListIndex = 0

‘Add seat types to first combo box

cboSeat.AddItem "Aisle"

cboSeat.AddItem "Middle"

cboSeat.AddItem "Window"

cboSeat.ListIndex = 0

‘Add meal types to second combo box

cboMeal.AddItem " Vegetarian "

cboMeal.AddItem " Meat"

cboMeal.AddItem "Chinease"

cboMeal.AddItem " Chicken "

cboMeal.AddItem "Fruit Plate"

cboMeal.Text = "No Preference"

End Sub

This code simply initializes the list box and the list box portions of the two combo boxes.

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

 5. Attach this code to the cmdAssign_Click event:

Private Sub cmdAssign_Click()

‘Build message box that gives your assignment

Dim Message As String

Message = "Destination: " + lstCities.Text + vbCr

Message = Message + "Seat Location: " + cboSeat.Text + vbCr

Message = Message + "Meal: " + cboMeal.Text + vbCr

MsgBox Message, vbOKOnly + vbInformation, "Your Assignment"

End Sub

When the Assign button is clicked, this code forms a message box message by concatenating

the selected city (from the list box lstCities), seat choice (from cboSeat), and the meal

preference (from cboMeal).

6. Attach this code to the cmdExit_Click event:

Private Sub cmdExit_Click()

End

End Sub

7. Run the application. Save the project.

Scroll Bar Control Properties:

Horizontal and vertical scroll bars are widely used in Windows applications. Scroll bars

provide an in-built way to move through a list of information. Both types of scroll bars are

comprised of three areas that can be clicked, or dragged, to change the scroll bar value. Those

areas are:

Clicking an end arrow increments the scroll box a small amount, clicking the bar area increments

the scroll box a large amount, and dragging the scroll box (thumb) provides continuous motion.

Using the properties of scroll bars, we can completely specify how one works. The scroll box

position is the only output information from a scroll bar.

Scroll Bar Properties:
LargeChange : Increment added to or subtracted from the scroll bar Value property when the

bar area is clicked.

Max : The value of the horizontal scroll bar at the far right and the value of the vertical scroll bar

at the bottom. Can range from -32,768 to 32,767.

Min : The other extreme value - the horizontal scroll bar at the left and the vertical scroll bar at

the top. Can range from -32,768 to 32,767.

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

SmallChange : The increment added to or subtracted from the scroll bar Value property when

either of the scroll arrows is clicked.

Value : The current position of the scroll box (thumb) within the scroll bar. If you set this in

code, Visual Basic moves the scroll box to the proper position.

If you ever change the Value, Min, or Max properties in code, make sure Value is at all times

between Min and Max or and the program will stop with an error message.

Scroll Bar Events:

Change : Event is triggered after the scroll box's position has been modified. Use this event to

retrieve the Value property after any changes in the scroll bar.

Scroll : Event triggered continuously whenever the scroll box is being moved.

Slider Control- Properties:

The Slider control is similar to the ScrollBar control, but it doesn’t cover a continuous range of values: The Slider

control has a fixed number.of tick marks, which the developer can label (e.g., Off, Slow, Speedy,). The user can

place the slider’s indicator to the desired value. While the ScrollBar control relies on some visual feedback outside

the control to help the user position the indicator to the desired value, the Slider control forces the user to

select from; a range of valid values.

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

In short, the ScrollBar control should be used when the exact value isn’t as important as the value’s effect on

another object or data element. The Slider control should be used when the user can type a numeric value and the

value your application expects is a number in a specific range; for example, integers between a and 100, or a value

between a and 5 inches in steps of 0.1 inches (0.0, 0.1, 0.2 inches, and so on, up to 5 inches). The Slider control

is preferred to the TextBoxcontrol in similar situations because there’s no need for data validation on your part.

The user can only specify valid numeric values with the mouse.

Understanding Visual data manager:

The Visual Basic 6 Data Manager is a complete program (written in Visual Basic!) that ships

with Visual Basic 6.0. This program can be used to create new Microsoft Access databases and

edit, convert, compact, repair, encrypt, and decrypt existing databases. You can use Data

Manager to create or delete data tables and indexes. You can also use the Visual Basic 6 Data

Manager to perform simple data entry on data tables.

The Visual Basic 6 Data Manager can create databases in the Microsoft Access database

format. It can also be used to attach to and perform field maintenance and data entry on

Paradox, dBASE, FoxPro, Btrieve, and ODBC data sources. It can even attach to Excel

spreadsheets and DOS Text files.

Using the Data Manager
Today you will learn how to use the Data Manager that is shipped with Visual Basic 6. This utility program gives

you the power to create and maintain basic databases without leaving Visual Basic 6 design mode. You will learn

how to use the Data Manager program to do the following:

• Create a new database

• Open existing databases

• Add data tables to a database

• Link to information contained in other databases

• Add fields and indexes to a database

• Set relationships between data tables

• Enter and find data in data tables

• Enter and save SQL statements

• Compact and repair databases

• Encrypt and decrypt databases

Plus, today is the day you start building your first extended Visual Basic 6 database project—The Company

Database Project. You will use the Data Manager to construct the first data table in the database—the

CompanyMaster table.

Microsoft Access Database Support
The Visual Basic 6 Data Manager provides nearly complete support for Microsoft Access databases. It allows you

to create databases and create and delete tables, indexes, and data fields. You will not, however, be able to delete

data fields that are used in indexes.

Advantages and Disadvantages of Using the Data Manager

• The Data Manager program has several key features that make it an excellent tool for constructing and

maintaining databases for your Visual Basic 6 applications. First, you can launch this program directly from the

Visual Basic 6 Add-Ins menu. As long as Visual Basic 6 is up and running in design mode, you can call up the

Data Manager and create new databases, open existing databases, or modify data tables and indexes without

having to leave Visual Basic 6 or close down your Visual Basic 6 project.

• Another advantage of having the Data Manager is that you can use it to do quick data entry into

existing data tables. This allows you to quickly create test data for your Visual Basic 6 applications. Do you

DAYANAND SCIENCE COLLEGE LATUR.
Visual Basic 6.0 Class: BSC TY

need to see whether a database lookup routine you wrote really works? You can pop up the Data Manager add a

few records to the appropriate data table, and then return to Visual Basic 6 and run your application.

• You can also use the Data Manager to compact out deleted records (in other words, physically remove

spaces left by deleted records), and for those occasions when you get the dreaded "corrupted database" error,

you can use the Data Manager to repair existing Microsoft Access type databases.

• You can even use Data Manager to build and test SQL statements. This is an extremely handy tool to

have in order to test the logic of SQL statements as you need to incorporate them into your Visual Basic 6 code.

These statements, once tested and working properly, can then be saved by Data Manager.

• A major disadvantage of using the Data Manager to create databases for your Visual Basic 6

applications is that it is not a complete database administration tool. Although you can use the Data Manager to

construct and maintain data tables and indexes, you cannot print out data structures or index parameters.

• Even with this limitation, the Data Manager is a very useful tool. Let's go through a short course on

how to use the Data Manager to construct and maintain Microsoft Access-type databases.

