
Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Chapter 2

Variables
The named memory Location is called Variable. Variables are used to store values or data In Visual Basic; you

use variables to temporarily store values during the execution of an application. Variables have a name and a

data type. You can think of a variable as a placeholder in memory for an unknown value.

Declaring Variables
To declare a variable is to tell the program about it in advance. You declare a variable with the Dim statement,

supplying a name for the variable:

Syntax: Dim variable name [As type]

In this syntax,

 Dim is the keyword that tells Visual Basic that you want to declare a variable.

 Variable Name is the name of the variable.

 the variable.

 Type is the data type of the variable.

 Variables declared with the Dim statement within a procedure exist only as long as the procedure is

executing. When the procedure finishes, the value of the variable disappears.

 In addition, the value of a variable in a procedure is local to that procedure — that is, you can't access a

variable in one procedure from another procedure.

 These characteristics allow you to use the same variable names in different procedures without worrying

about conflicts or accidental changes.

A variable name:

 -declaration character.

 scope, which is the range from which the variable can be referenced

 a procedure, a form, and so on.

There are various ways of declaring a variable in VB depending upon where the variables are declared as given

below.

 1) Explicit declaration

 2) Implicit Declaration

1) Explicit Declaration
Explicit declaration means that you must use a statement to define a variable. Each of the following statements

can be used to explicitly declare a variable's type:

Dim VarName [As VarType][, VarName2 [As VarType2]]

Private VarName[As VarType][, VarName2[As VarType2]]

Static VarName[As VarType][, VarName2[As VarType2]]

Public VarName[As VarType][, VarName2[As VarType2]]

Dim, Private, Static, and Public are Visual Basic keywords that define how and where the variable can be used.

VarName and VarName2 represent the names of the variables that you want to declare.

As indicated in the syntax, you can specify multiple variables in the same statement as long as you separate the

variables by commas. VarType and VarType2 represent the type name of the respective variables.

The type name is a keyword that tells Visual Basic what kind of information will be stored in the variable.

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

2) Implicit Declaration
Whenever you use implicit declaration, Visual Basic considers that variable as type Variant. Using implicit

declaration isn't recommended, however. Making a variable without a formal declaration is asking for trouble. If

you use implicit declaration, then any time you make a spelling mistake or syntax error, Visual Basic will think

that you're implicitly declaring another variable, which can lead to headaches beyond imagination.

4.5 Constants
To greatly improve the readability of your code — and make it easier to maintain Constants is used.

A constant is a meaningful name that takes the place of a number or string that does not change.

Although a constant somewhat be similar to a variable, you can't modify a constant or assign a new value to it

as you can to a variable.

There are two sources for constants:

Intrinsic or system-defined constants are provided by applications and controls. Visual Basic constants are

listed in the Visual Basic (VB) and Visual Basic for applications (VBA) object libraries in the Object Browser.

Other applications that provide object libraries, such as Microsoft Excel and Microsoft Project, also provide a

list of constants you can use with their objects, methods, and properties.

Symbolic or user-defined constants are declared using the Const statement.

The syntax for declaring a constant is:

[Public|Private] Const constantname[As type] = expression

The argument constantname is a valid symbolic name (the rules are the same as those for creating variable

names), and expression is composed of numeric or string constants and operators; however, you can't use

function calls in expression.

A Const statement can represent a mathematical or date/time quantity:

Const conPi = 3.14159265358979

Public Const conMaxPlanets As Integer = 9

Const conReleaseDate = #1/1/95#
The Const statement can also be used to define string constants:

Public Const conVersion = "07.10.A"

Const conCodeName = "Enigma"
You can place more than one constant declaration on a single line if you separate them with commas:

Public Const conPi = 3.14, conMaxPlanets = 9,conWorldPop = 6E+09
A Const statement has scope like a variable declaration, and the same rules apply:

module, declare it in the Declarations section of the module.

section of a standard module, and place the Public keyword before Const. Public constants cannot be declared

in a form or class module.

Operator
An operator is a symbol that performs an operation on one or more code elements that hold values. Value

elements include variables, constants, literals, properties, and returns from Function. Visual Basic provides the

following types of operators:

 1. Arithmetic Operators

 2. Comparison Operators.

 3. Concatenation Operators

 4. Logical and Bitwise

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

1. Arithmetic Operators:
These operators are used to perform basics

arithmetic operations.

Operator Action

^ exponentiation

− Subtraction, also unary minus

+ Addition

* Multiplication

/ Division

Mod Modulus

2. Comparison Operators:
Compare two expressions and return a Boolean

value representing the result of the comparison.

Operator Action

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

== Equal

Like a pattern matching operator

Is an object type comparer

3. Concatenation Operators:
Join multiple strings into a single string.

Operator Action

& String concatenation

+ String concatenation

4. Logical and Bitwise Operators:
In Visual Basic combine Boolean or numeric values

and return a result of the same data type as the

values.

Operator Action

And And

Or Or

Not Not

Xor exclusive or

Operator precedence & associativity
When several operations occur in an expression, each part is evaluated and resolved in a predetermined order

called operator precedence.

Precedence Rules:
When expressions contain operators from more than one category, they are evaluated according to the following

rules:

1. The arithmetic and concatenation operators have the order of precedence described below, and all have

higher precedence than the comparison, logical, and bitwise operators.

2. All comparison operators have equal precedence, and all have higher precedence than the logical and bitwise

operators, but lower precedence than the arithmetic and concatenation operators.

3. The logical and bitwise operators have the order of precedence described below, and all have lower

precedence than the arithmetic, concatenation, and comparison operators.

4. Operators with equal precedence are evaluated left to right in the order in which they appear in the

expression.

Precedence Order:

Operators are evaluated in the following order of precedence:

Arithmetic Operators Comparison Operators Logical and Bitwise Concatenation

^ = Not &, +

− negation <> And

*, / < Or

Mod > Xor

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

+, - <=

 >=

 Like, Is

Associativity
When operators of equal precedence appear together in an expression, for example multiplication and division,

the compiler evaluates each operation as it encounters it from left to right. The following example illustrates

this.

Dim n1 As Integer = 96 / 8 / 4
The first expression evaluates the division 96 / 8 (resulting in 12) and then the division 12 / 4, resulting in 3.

Because the compiler evaluates the operations for n1 from left to right

Dim n2 As Integer = (96 / 8) / 4

The evaluation is exactly the same when that order is explicitly indicated for n2. Both n1 and n2 have a result of

Dim n3 As Integer = 96 / (8 / 4)

By contrast, n3 has a result of 48, because the parentheses force the compiler to evaluate 8 / 4 first.

Because of this behavior, operators are said to be left associative in Visual Basic.

Data Types
Visual basic Provides the following data types.

 Data type Description Range

Byte 1-byte binary data 0 to 255

Integer 2-byte integer – 32,768 to 32,767

Long 4-byte integer – 2,147,483,648 to 2,147,483,647

Single 4-byte floating-point number – 3.402823E38 to – 1.401298E – 45 (negative values)

 1.401298E – 45 to 3.402823E38 (positive values)

Double 8-byte floating-point number – 1.79769313486231E308 to – 4.94065645841247E –

324 (negative values)

 4.94065645841247E – 324 to 1.79769313486231E308

(positive values)

Currency 8-byte number with fixed decimal point – 922,337,203,685,477.5808 to

922,337,203,685,477.5807

String String of characters Zero to approximately two billion characters

Variant Date/time, floating-point number,

integer, string, or object.

16 bytes, plus 1 byte for each character

if a string value.

Date values: January 1, 100 to December 31, 9999

Numeric values: same range as Double

String values: same range as String Can also contain

Error or Null values

Boolean 2 bytes True or False

Date 8-byte date/time value January 1, 100 to December 31, 9999

Object 4 bytes Any Object reference

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Boolean
A Boolean variable is one whose value can be only either True or False. To declare such a variable, use the

Boolean keyword. Here is an example:

Private Sub Form_Load()

 Dim IsMarried As Boolean

End Sub
After declaring a Boolean variable, you can initialize by assigning it either True or False. Here is an example:

Private Sub Form_Load()

 Dim IsMarried As Boolean

 IsMarried = False

End Sub

Like any other variable, after initializing the variable, it keeps its value until you change its value again.

Byte
A byte is a small natural positive number that ranges from 0 to 255. A variable of byte type can be used to hold

small values such as a person's age, the number of fingers on an animal, etc.

To declare a variable for a small number, use the Byte keyword. Here is an example:

Private Sub Form_Load()

 Dim StudentAge As Byte

End Sub

Currency
Currency variables are stored as 64-bit (8-byte) numbers in an integer format, scaled by 10,000 to give a fixed-

point number with 15 digits to the left of the decimal point and 4 digits to the right. This representation provides

a range of -922,337,203,685,477.5808 to 922,337,203,685,477.5807. The type-declaration character for

Currency is the at sign (@).The Currency data type is useful for calculations involving money and for fixed-

point calculations in which accuracy is particularly important.

Private Sub Form_Load()

 Dim Sal As currency

End Sub

Date
Date variables are stored as 64-bit (8-byte) floating-point numbers that represent dates ranging from 1 January

100 to 31 December 9999 and times from 0:00:00 to 23:59:59. Any recognizable literal date values can be

assigned to Date variables. Date literals must be enclosed within number signs (#), for example, #January 1,

1993# or #1 Jan 93#. Date variables display dates according to the short date format recognized by your

computer. Times display according to the time format (either 12-hour or 24-hour) recognized by your computer.

Double
Double (double-precision floating-point) variables are stored as 64-bit (8-byte) floating-point numbers ranging

in value from -1.79769313486232E308 to -4.94065645841247E-324 for negative values and from

4.94065645841247E-324 to 1.79769313486232E308 for positive values.

Integer
Integer variables are stored as 16-bit (2-byte) numbers ranging in value from -32,768 to 32,767. The type-

declaration character for Integer is the percent sign (%)

Long
Long (long integer) variables are stored as signed 32-bit (4-byte) numbers ranging in value from -2,147,483,648

to 2,147,483,647. The type-declaration character for Long is the ampersand (&).

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Object
Object variables are stored as 32-bit (4-byte) addresses that refer to objects. Using the Set statement, a variable

declared as an Object can have any object reference assigned to it.

Single
 Single (single-precision floating-point) variables are stored as IEEE 32-bit (4-byte) floating-point numbers,

ranging in value from -3.402823E38 to -1.401298E-45 for negative values and from 1.401298E-45 to

3.402823E38 for positive values. The type-declaration character for Single is the exclamation point (!).

String
 There are two kinds of strings: variable-length and fixed-length strings. A variable-length string can contain up

to approximately 2 billion (2^31) characters. A fixed-length string can contain 1 to approximately 64K (2^16)

characters.

Variant
The Variant data type is the data type for all variables that are not explicitly declared as some other type (using

statements such as Dim, Private, Public, or Static). The Variant data type has no type-declaration character A

Variant is a special data type that can contain any kind of data.

I/O Statements
Visual Basic provides two basic I/O statements for displaying (or requesting) information to the user: MsgBox()

and InputBox(). Windows applications should communicate with the user via nicely designed Forms, but the

MsgBox() and InputBox() functions are still around and quite useful.

The Message Box (MSG Box)
One of the best functions in Visual Basic is the message box. The message box displays a message, optional

icon, and selected set of command buttons. The user responds by clicking a button. The statement form of the

message box returns no value (it simply displays the box):

 MsgBox Message, Type, Title
 where

Message Text message to be displayed

Type Type of message box

Title Text in title bar of message box

InputBox
One excellent use for a variable is to hold user input information. Often, you can use an object such as a file

list box or a text box to retrieve this information. At times, though, you’ll want to deal directly with the user and

save the input in a variable rather than in a property. One way to do this is to use the InputBox function to

display a dialog box on the screen and then store in a variable the text that the user types.

Like a message box, an input box is a (relatively) small form (in reality, it is a dialog box) that displays a

message to the user. Unlike a message box, an input box presents a small text box that expects the user to enter

a value. After using it, the user can either send the form with the new value or dismiss it without any change.

To create an input box, you can use the InputBox function procedure prompts the user to enter some

information in a message box, and the function will return the content of that box.

InputBox syntax looks like this:

VariableName = InputBox (Prompt)

where

VariableName is a variable used to hold the input.

Prompt is a prompt that appears in the dialog box.

The dialog box created with an InputBox function typically contains these features:

 A prompt for directing the user.

 A text box for receiving typed input.

 Two command buttons, OK and Cancel.

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Example (For Practical):
 1. Start a new project.

 2. Place the one Textbox & 1 command button on the form as shown in following form.

 3. Set the properties of the form and each object.

Form1: Text1: Command1

Caption: Input Multiline: True. Caption: Input

 4. Attach the following code to given event.

 Private Sub Command1_Click()
Dim n, i, sum As Integer

Dim ms As String

sum = 0

n = InputBox("Enter The Number")

For i = 1 To 10

sum = 0

sum = n * i

ms = ms & sum & vbNewLine

 Next i

Text1.Text = ms

MsgBox "You Print the Table of‖ & n

End Sub
Output:

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Control Flow Statements

An application needs a built-in capability to test condition and take a different course of action depending on the

test. Visual Basic Provides three Control flow or Decision structures.

1. If….. Then

2. If……. Then …..Else

3. Select Case

If….. Then

The If…. Then structure tests the conditions specified, and if it’s true, executes the statement(s) that follow. The

If structure can have a single line or a multiple line syntax. To Execute one statement conditionally. Use the

Single-Line syntax as follows

Syntax

IF

(Condition)

Then

(Statement)

Eg:

 If Month(Date)=1 then

Year=year+1

You can also execute the multiple statements by separating them with a colon:

Syntex

IF

(Condition)

Then

(Statement):(Statement):(Statement)

If….Then….Else

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

A variation of the If...Then statement is the If... Then... Else statement, which executes one block of statements if the

condition is True and another if the condition is False. The syntax of the If...Then...Else statement is as follows:

If condition Then

statementblock-1

Else

statementblock-2

End If
Visual Basic evaluates the condition, and if it’s True, it executes the first block of statements and then jumps to the

statement following the End If statement. If the condition is False, Visual Basic ignores the first block of statements

and executes the block following the Else keyword.

Another variation of the If...Then...Else statement uses several conditions, with the ElseIf keyword:

If condition1 Then

statementblock-1

ElseIf condition2 Then

statementblock-2

ElseIf condition3 Then
statementblock-3

Else

statementblock-4
End If

You can have any number of ElseIf clauses. The conditions are evaluated from the top, and if one of them is True,

the corresponding block of statements is executed. The Else clause will be executed if none of the previous

expressions are True. Here’s an example of an If statement with ElseIf clauses:

score = InputBox(“Enter score”)

If score < 50 Then

Result = “Failed”

ElseIf score < 75 Then

Result = “Pass”

ElseIf score < 90 Then

Result = “Very Good”

Else

Result = “Excellent”

End If

MsgBox Result

Example (For Practical):
 1. Start a new project.

 2. Place the labels, Textboxes & lines on the form as shown in following form.

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

 3. Set the properties of the form and each object.

Form1:
BorderStyle 1-Fixed Single

Caption MarkMemo

Name frmMM

Label1: Label2: Label3:

Caption: Dayanand Science

College, Latur Alignment 2-

Center

Caption: Name Caption: Class

Label4: Label5: Label6:

Caption Subject Caption Max Mark Caption Min Mark

Label7: Label8: Label9:

Caption Obtain Mark Caption VB Caption C++

Label10: Label11: Label12:

Caption SE Caption Oracle Caption 100

 Label13: Label14: Label15:

Caption 100 Caption 100 Caption 100

Label16: Label17: Label18:

Caption 40 Caption 40 Caption 40

 Label19: Label20: Label21:

Caption 40 Caption Result Caption [Blank]

Label22:

Caption [Blank]

 4. Attach the following code to given event.

Dim total As Integer

Dim per As Double

Private Sub Text3_LostFocus()
Text3.Enabled = False

End Sub

Private Sub Text4_LostFocus()
Text4.Enabled = False

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

End Sub

Private Sub Text5_LostFocus()
Text5.Enabled = False

End Sub

Private Sub Text6_LostFocus()
Text6.Enabled = False

total = Val(Text3.Text) + Val(Text4.Text) + Val(Text5.Text) + Val(Text6.Text)

Label15.Caption = total

If Val(Text3.Text) >= 40 And Val(Text4.Text) >= 40 And Val(Text5.Text) >= 40 And Val(Text6.Text) >= 40 Then

per = total / 4

If per >= 70 Then

Label16.Caption = "Des"

ElseIf per >= 60 Then

Label16.Caption = "First Class"

ElseIf per >= 50 Then

Label16.Caption = "Second Class"

ElseIf per >= 40 Then

Label16.Caption = "Third Class"

Else

Label16.Caption = "Fail"

End If

Else

Label16.Caption = "Fail"

End If

End Sub

Private Sub Command1_Click()
Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

Text4.Text = ""

Text5.Text = ""

Text6.Text = ""

Text3.Enabled = True

Text4.Enabled = True

Text5.Enabled = True

Text6.Enabled = True

Text1.SetFocus

End Sub

Private Sub Command2_Click()
End

End Sub

Select Case statements
The Select Case structure compares one expression to different values. The advantage of the Select Case

statement over multiple If...Then...Else a statement is that it makes the code easier to read and maintain.

The Select Case structure tests a single expression, which is evaluated once at the top of the structure. The result

of the test is then compared with several values, and if it matches one of them, the corresponding block of

statements is executed. Here’s the syntax of the Select Case statement:

Select Case expression

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Case value1

 statementblock-1

Case value2

 statementblock-2

 .

 .

 .

Case Else

 statementblock

End Select
The expression variable is evaluated at the beginning of the statement. The value of the expression is then

compared with the values that follow each Case keyword. If they match, the

block of statements up to the next Case keyword is executed, and the program skips to the statement following

the End Select statement. The block of the Case Else statement is optional and is executed if none of the

previous Case values match the expression.

Example (For Practical):
 4. Start a new project.

 5. Place the 5 labels, 5 Textboxes & 1 command button on the form as shown in following form.

 6. Set the properties of the form and each object.

Form1: Command1

Caption Select_Case Caption Clear

Name frmSC

Label1: Label2:

Caption Enter 1st Number Caption Enter 2nd Number

Alignment 2- Center Alignment 2- Center

Label3: Label4:

Caption Enter Your Choice Caption Result

Alignment 2- Center Alignment 0- Left

 Label5: Text1:

Caption Choice Multiline True.

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Alignment 2- Center Text 1. ADD

Multiline True 2. SUB

Forecolor red 3. MUL

Font 4. DIV

 5. Attach the following code to given event.

Private Sub Command1_Click()
Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

Text5.Text = ""

Text1.SetFocus

End Sub

Private Sub Text3_LostFocus()
Dim n1, n2, res, ch As Integer

n1 = Val(Text1.Text)

n2 = Val(Text2.Text)

ch = Val(Text3.Text)

Select Case ch

Case 1

Text5.Text = n1 + n2

Case 2

Text5.Text = n1 - n2

Case 3

Text5.Text = n1 * n2

Case 4

Text5.Text = n1 / n2

Case 5

End

Case Else

Text5.Text = "Your choice is wrong"

End Select

End Sub

Output:

Loop Statements
Loop statements allow you to execute one or more lines of code repetitively. Many tasks consist of trivial

operations that must be repeated over and over again, and looping structures are an important part of any

programming language. Visual Basic supports the following loop statements:

 Do...Loop

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

 For...Next

Do...Loop
The Do...Loop executes a block of statements for as long as a condition is True. Visual Basic evaluates an

expression, and if it’s True, the statements are executed. If the expression is False, the program continues and

the statement following the loop is executed.

There are two variations of the Do...Loop statement and both use the same basic model. A loop can be executed

either while the condition is True or until the condition becomes True. These two variations use the keywords

While and Until to specify how long the statements are executed. To execute a block of statements while a

condition is True, use the following syntax:

Do While condition

 statement-block

Loop
To execute a block of statements until the condition becomes True, use the following syntax:

Do Until condition

 statement-block

Loop
When Visual Basic executes the previous loops, it first evaluates condition. If condition is False, the Do...While

or Do...Until loop is skipped (the statements aren’t even executed once). When the Loop statement is reached,

Visual Basic evaluates the expression again and repeats the statement block of the Do...While loop if the

expression is True, or repeats the statements of the Do...Until loop if the expression is False.

The Do...Loop can execute any number of times as long as condition is True. Moreover, the number of

iterations need not be known before the loops starts. If condition is initially False, the statements may never

execute.

Another variation of the Do loop executes the statements first and evaluates the condition after each execution.

This Do loop has the following syntax:

Do

statements

Loop While condition

or

Do

statements

Loop Until condition
The statements in this type of loop execute at least once, since the condition is examined at the end of the loop.

For...Next
The For...Next loop is one of the oldest loop structures in programming languages. Unlike the Do loop, the

For...Next loop requires that you know how many times the statements in the loop will be executed. The

For...Next loop uses a variable (it’s called the loop’s counter) that increases or decreases in value during each

repetition of the loop. The For...Next loop has the following syntax:

For counter = start To end [Step increment]

statements

Next [counter]
The keywords in the square brackets are optional. The arguments counter, start, end, and increment are all

numeric. The loop is executed as many times as required for the counter to reach (or exceed) the end value.

In executing a For...Next loop, Visual Basic completes the following steps:

1. Sets counter equal to start

2. Tests to see if counter is greater than end. If so, it exits the loop. If increment is negative, Visual Basic tests

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

to see if counter is less than end. If it is, it exits the loop.

3. Executes the statements in the block

4. Increments counter by the amount specified with the increment argument. If the increment argument isn’t

specified, counter is incremented by 1.

5. Repeats the statements

Example (For Practical):
1. Start a new project.

2. Place five command buttons on the form as shown in following form.

3. Set the properties of the command button.

 Command1: Command2: Command3: Command4:
 Caption While Caption Until Caption Odd Caption Even

 Command5:
 Caption Clear

 4. Attach the following code to given event.

Private Sub Command1_Click()
Dim i As Integer

i = 1

Do While i <= 10

Form1.Print i

i = i + 1

Loop

End Sub

Private Sub Command2_Click()
Dim i As Integer

i = 1

Do Until i > 10

Form1.Print i

i = i + 1

Loop

End Sub

Private Sub Command3_Click()
Form1.Cls

End Sub

Private Sub Command4_Click()
Dim i As Integer

For i = 1 To 10 Step 2

Form1.Print i

Next

End Sub

Private Sub Command5_Click()
Dim i As Integer

For i = 2 To 10 Step 2

Form1.Print i

Next

End Sub

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

 Output :

Arrays
A standard structure for storing data in any programming language is the array. Whereas individual variables

can hold single entities, such as one number, one date, or one string, arrays can hold sets of data of the same

type (a set of numbers, a series of dates, and so on). An array has a name, as does a variable, and the values

stored in it can be accessed by an index.

An array is similar to a variable: it has a name and multiple values. Each value is identified by an index (an

integer value) that follows the array’s name in parentheses. Each different value is an element of the array.

For eg.

Dim salaries (15) As Integer
If the array Salaries holds the salaries of 16 employees, the element Salaries(0) holds the salary of the first

employee, the element Salaries(1) holds the salary of the second employee, and so on up the element

Salaries(15).NET

The indexing of arrays in VB.NET starts at zero.

Declaring Arrays
Arrays must be declared with the Dim statement followed by the name of the array and the index of the last

element in the array in parentheses.

Syntax : Dim Array name() As Data type

for example,

Initializing Arrays
Just as you can initialize variables in the same line where you declare them, you can initialize arrays, too, with

the following syntax:

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Dim arrayname() As type = {entry0, entry1, … entryN}
example that initializes an array of strings:

Dim names() As String = {“Joe Doe”, “Peter Smack”}
This statement is equivalent to the following statements, which declare an array with two elements and then set

their values:

Dim names(1) As String

names(0) = “Joe Doe”

names(1) = “Peter Smack”
The number of elements in the curly brackets following the array’s declaration determines the dimensions of the

array, and you can’t add new elements to the array without resizing it.

Array Limits
The first element of an array has index 0. The number that appears in parentheses in the Dim statement is one

less than the array’s total capacity and is the array’s upper limit (or upper bound).

The index of the last element of an array (its upper bound) is given by the function UBound(), which accepts as

argument the array’s name. For the array

Dim myArray(19) As Integer
its upper bound is 19, and its capacity is 20 elements.

Private Sub Command1_Click()

Dim a(5), i, max As Integer

 For i = 0 To 4

 a(i) = InputBox("enter a number")

 Next

 max = a(0)

 For i = 0 To 4

 If a(i + 1) > max Then

 max = a(i + 1)

 End If

 Next

 MsgBox ("Largest number is " & max)

End Sub

 Eg.

Multidimensional Arrays
One-dimensional arrays, such as those presented so far, are good for storing long sequences of one dimensional

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

data (such as names or temperatures). But how would you store a list of cities and their average temperatures in

an array? Or names and scores, years and profits.

A two-dimensional array has two indices. The first identifies the row, and the second identifies the column.

Declaring Multidimensional Arrays
Multidimensional arrays must be declared with the Dim statement followed by the name of the array and the

index of the row & column in the array in parentheses.

Syntax : Dim Array name(row, column) As Data type

for example,

Dim Marks(3,3) As Integer

Initializing Arrays
The following statements initialize a two-dimensional array.

Syntax :

Dim Array name() As Data type = {{element of 1st row}, { element of 2nd row }, { element of 3rd row },{

element of nth row }}
Dim a(,) As Integer = {{10, 20, 30}, {11, 21, 31}, {12, 22, 32}}

 Dim i, j As Int16

 For i = 0 To 2

 For j = 0 To 3

 a(i, j) = (i * 4) + j + 1

 Next

 Next

 Label1.Text = a(0, 0)

 Label2.Text = a(0, 1)

 Label3.Text = a(0, 2)

 Label4.Text = a(0, 3)

 Label5.Text = a(1, 0)

 Label6.Text = a(1, 1)

 Label7.Text = a(1, 2)

 Label8.Text = a(1, 3)

 Label9.Text = a(2, 0)

 Label10.Text = a(2, 1)

 Label11.Text = a(2, 2)

 Label12.Text = a(2, 3)

Dynamic Arrays
Sometimes you may not know how large to make an array. Instead of making it large enough to hold the

maximum number of data, you can declare a dynamic array. The size of a dynamic array can vary during the

execution of the program.

With a dynamic array, you can discard the data and return the resources it occupied to the system.

To create a dynamic array, declare it as usual with the Dim statement (or Public or Private) but don’t specify its

dimensions:

Each time you execute the ReDim statement, all the values currently stored in the array are lost.

You can, however, change the size of the array without losing its data. The ReDim statement recognizes the

Preserve keyword, which forces it to resize the array without discarding the existing data.

For example, you can enlarge an array by one element without losing the values of the existing elements by

using the UBound() function as follows:

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

ReDim Preserve DynamicArray(UBound(DynArray) + 1)
If the array DynamicArray held 12 elements, this statement would add one element to the array, the element

DynamicArray(12). The values of the elements with indices 0 through 11 wouldn’t change.

Private Sub Command2_Click()

Dim a(), i, max, count, n As Integer

 count = InputBox("Enter array limit")

 ReDim a(count)

 For i = 0 To count

 a(i) = InputBox("enter a number")

 Next

 max = a(0)

 For i = 0 To count - 1

 If a(i + 1) > max Then

 max = a(i + 1)

 End If

 Next

 MsgBox ("Largest number is " & max)
End Sub

Collections

Collection class provides an array-like container more flexible than an array in some ways and less flexible in other
ways. More flexible in some ways than Collection is Dictionary class.

Creating a new collection:

 Dim Cats As Collection

 Set Cats = New Collection

Dimensioning and creating a new collection in one line:

 Dim Cats As New Collection

Adding an item:

 Cats.Add "Item"

 Cats.Add "Item", "Key"

Accessing an item at an index, in a read-only way:

 Cats (3) 'The third member of the collection

 Cats.Item(3) 'An alternative

 Cats.Item("Key 3") 'Works if an item has a key associated

Overwriting a item at an index:

 NewValue = MyCollection(i) + 1

 MyCollection.Add NewValue, Before:=i

 MyCollection.Remove Index:=i + 1

Removing an item:

 Collection.Remove Index

 Collection.Remove HashKey

The size of a collection:

 Cats.Count

Iterating over a collection, read-only:

 For Each Cat In Cats

 Rem Do something on Cat

 Next

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Iterating over a collection, read-write:

 'Fill the collection

 Set MyCollection = New Collection

 For i = 1 To 10

 MyCollection.Add i

 Next

 'Increment each item by 1

 For i = 1 To MyCollection.Count

 NewValue = MyCollection(i) + 1

 MyCollection.Add NewValue, Before:=i

 MyCollection.Remove Index:=i + 1

 Next

Testing the emptiness of a collection:

 If Cats.Count=0 Then

 '...

 End If

Example of Collection is:

Procedures
Visual Basic offers different types of procedures to execute small sections of coding in applications. The various
procedures are elucidated in details in this section. Visual Basic programs can be broken into smaller logical components
called Procedures. Procedures are useful for condensing repeated operations such as the frequently used calculations,
text and control manipulation etc. The benefits of using procedures in programming are:
It is easier to debug a program a program with procedures, which breaks a program into discrete logical limits.
Procedures used in one program can act as building blocks for other programs with slight modifications.

Following are the types of procedures
1. Sub Procedures
2. Event Procedures
3. Function Procedures
4. Property procedures

Sub Procedures
A sub procedure can be placed in standard, class and form modules. Each time the procedure is called, the statements
between Sub and End Sub are executed. The syntax for a sub procedure is as follows:

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

[Private | Public] [Static] Sub Procedurename [(arglist)]

[statements]

End Sub

arglist is a list of argument names separated by commas. Each argument acts like a variable in the procedure. There are
two types of Sub Procedures namely general procedures and event procedures.

Event Procedures
An event procedure is a procedure block that contains the control's actual name, an underscore(_), and the event name.
The following syntax represents the event procedure for a Form_Load event.
Private Sub Form_Load()

....statement block..

End Sub

Event Procedures acquire the declarations as Private by default.

General Procedures
A general procedure is declared when several event procedures perform the same actions. It is a good programming
practice to write common statements in a separate procedure (general procedure) and then call them in the event
procedure.
In order to add General procedure:

 The Code window is opened for the module to which the procedure is to be added.

 The Add Procedure option is chosen from the Tools menu, which opens an Add Procedure dialog box as shown
in the figure given below.

 The name of the procedure is typed in the Name textbox

 Under Type, Sub is selected to create a Sub procedure, Function to create a Function procedure or Property to
create a Property procedure.

 Under Scope, Public is selected to create a procedure that can be invoked outside the module, or Private to
create a procedure that can be invoked only from within the module.

Function Procedures

Functions are like sub procedures, except they return a value to the calling procedure. They are especially useful for
taking one or more pieces of data, called arguments and performing some tasks with them. Then the functions returns a
value that indicates the results of the tasks complete within the function.

The following function procedure calculates the third side or hypotenuse of a right triangle, where A and B are the other
two sides. It takes two arguments A and B (of data type Double) and finally returns the results.

Function Hypotenuse (A As Double, B As Double) As Double

Hypotenuse = sqr (A^2 + B^2)

End Function

The above function procedure is written in the general declarations section of the Code window. A function can also be
written by selecting the Add Procedure dialog box from the Tools menu and by choosing the required scope and type.

Property Procedures

A property procedure is used to create and manipulate custom properties. It is used to create read only properties for
Forms, Standard modules and Class modules.Visual Basic provides three kind of property procedures-Property Let
procedure that sets the value of a property, Property Get procedure that returns the value of a property, and Property Set
procedure that sets the references to an object.

Questions for Assignment

Q1. Explain the Variables used in Visual Basic.

Dayanand Science College Latur
Class: B.Sc. Ty Sub: Visual Basic

Q2. Explain the Operators used in Visual Basic.
Q3. Explain the Data types used in Visual Basic.
Q4. Explain the Control flow statement with suitable example.
Q5. Explain the Looping statement with suitable example.
Q6. Explain the Select Case statement with suitable example.
Q7.Explain the types of Arrays in visual basic.
Q8.Explain the collections in Visual Basic.
Q9. Explain the Procedures in Visual Basic.

