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Summary 
 
Environments in which extremely acidophilic microorganisms (those able to grow 
optimally at pH 3 or less) are found occur in many places on Earth. Some are formed 
naturally while others are the result of human activity. Acidic environments formed 
outside of human intervention are typically areas with volcanic activity where inorganic 
sulfur compounds are brought to the surface where they are oxidized to sulfuric acid. 
Sulfide-containing minerals may also be exposed or brought to the surface as a result of 
mining activity and when oxidized these minerals give rise to acid and metal pollution 
known as acid mine drainage. Biological oxidation of reduced sulfur compounds is very 
much faster than chemical oxidation and, as a result, most extreme acid environments 
are created by biological activity. Although iron is an abundant element on the surface 
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of Earth, it is rapidly oxidized and forms insoluble precipitates in neutral environments. 
However, iron is readily soluble in low pH environments and the cycling of iron 
between its reduced ferrous and oxidized ferric forms plays an important role in the 
ecology of acidic environments. The energy released when reduced inorganic sulfur 
compounds and ferrous iron are oxidized permits the growth of a variety of carbon 
dioxide-fixing organisms. These autotrophic iron- and sulfur-oxidizing organisms form 
the backbone of most acid environment ecosystems in which a number of heterotrophic 
organisms also thrive. The temperature in many acid environments may be considerably 
higher than ambient, either because they are associated with volcanic activity (natural 
environments) or because the energy-producing reactions are exothermic (mining 
activity-linked environments). As a result, many extreme acidophiles are also 
thermophilic. In this chapter, most of the important extreme acidophiles, their 
characteristics and their interactions are described. 
 
1. Definition of Extreme Acidophily 
 
Natural and man-made environments with varying degrees of acidity are present on 
Earth. Given this continuous spectrum of acidic environments, any attempt to define an 
exact boundary between extreme and moderate acidophily will be somewhat arbitrary 
and open to debate. In this chapter, we have defined extreme acidophiles as those 
organisms that grow optimally at pH 3 or less. This definition includes a large number 
of autotrophic and heterotrophic organisms belonging to the three major biological 
lineages, Archaea, Bacteria, and Eukarya, however, it does not include organisms that 
are able to tolerate, but not grow optimally at, pH values of 3 or below. Organisms that 
are excluded by this definition are sulfur-oxidizing bacteria, such as Thiomonas 
intermedius (formerly Thiobacillus intermedius) and physiological relatives thatare able 
to lower the pH of their environment to below 3 but are not able to grow when 
inoculated into media at this pH. Also excluded are many intestinal bacteria and human 
pathogens that are able to temporarily tolerate the low pH environment of the stomach. 
Some of these bacteria, like Helicobacter pylori, exhibit some of the bioenergetic 
attributes of extreme acidophiles but have not been reported to grow in laboratory media 
below pH 4. 
 
2. Low pH Environments 

2.1.Geothermal and Volcanic Areas 

High-temperature environments occur in zones of volcanism and in areas where Earth's 
crust is relatively thin. Examples of terrestrial and shallow marine locations include 
Yellowstone National Park (USA), Montserrat (West Indies), Whakarewarewa (New 
Zealand), Krisuvik (Iceland), the Kamchatka peninsular (Russia), Sao Michel (Azores), 
Volcano, Naples, and Ischia (all Italy) and Djibouti (Africa). Related to these are deep 
and abyssal submarine hydrothermal systems, such as the Mid-Atlantic ridge, the East 
Pacific Rise, the Guaymas Basin, and active seamounts (e.g., around Tahiti). Due to the 
influence of seawater, submarine hydrothermal systems are generally of pH 5–8 and 
saline. Acidic sites within geothermal and volcanic areas are most commonly located 
within solfataric fields. These are sulfur- and sulfide-rich areas where the potential for 
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acid production exceeds the buffering capacity of the basic minerals present. Elemental 
sulfur may be formed from condensation of volcanic gasses: 
 
2H2S + SO2 → 3S + 2H2O  (1) 
 
Biological oxidation of sulfur is mediated by acidophilic archaea (in the hotter zones 
within the solfatara) or bacteria (in the cooler fringes and run-off waters): 
 
S + H2O + 1.5O2 → H2SO4  (2) 
 
The extreme acidity and high temperatures cause the partial or complete destruction of 
minerals in the vicinity of the solfatara, leading to the formation of acidic mud pots. 
Oxygen solubility decreases with increasing temperature, so that the surface oxidized 
zone in a solfatarum often overlies an higher pH anaerobic layer, resulting in sulfur and 
iron cycling (involving changes in oxidation states of these elements) between the two 
layers. 
 
Examples of extremely acidic environments found in geothermal and volcanic areas are 
shown in Figures 1–3. 
 

 
 

Figure 1. The Norris Geyser Basin, a solfatara field in Yellowstone National Park, 
Wyoming. This is a typical sulfur-enriched geothermal area, within which may be found 

geysers, hot springs, fumaroles, and mudpots. 
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Figure 2. A boiling (85 °C), acidic (pH3), hot spring ("Frying Pan") located at outer 
fringe of the Norris Geyser area, Yellowstone National Park. Thermoacidophilic 

archaea have been isolated from this and similar environments. 
 

 
 

Figure 3. Gelatinous, filamentous, microbial growths in a stream draining the Frying 
Pan hot spring. The temperature in the stream is 30–50 °C, and the pH (at about pH 2.6) 

is lower than that of the hot spring itself, due to microbial oxidation of sulfur. The 
indigenous acidophilic microflora are more diverse than in the boiling hot spring, and 
include moderately thermophilic bacteria (e.g., Sulfobacillus spp.) as well as archaea. 
The green color of the growths is due to the presence of the moderately thermophilic 

and acidophilic rhodophyte, Cyanidium caldarium. 
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