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Summary 
 
The accumulation of organic solutes is a prerequisite for osmotic adjustment in the vast 
majority of halophilic microorganisms. Many thermophilic and hyperthermophilic 
microorganisms also live in saline environments and require mechanisms for osmotic 
adjustment. These organisms generally accumulate very unusual compatible solutes. Di-
myo-inositol-phosphate, dimannosyl-di-myo-inositol-phosphate, diglycerol phosphate, 
mannosylglycerate, and manosylglyceramide have not been identified in bacteria or 
archaea that grow at lower temperatures. Some of these compatible solutes, namely 
mannosylglycerate, mannosylglyceramide, and diglycerol phosphate play an important 
role in osmotic adaptation of thermophilic and hyperthermophilic organisms. There is 
also the growing awareness that some of these compatible solutes may have a role in the 
protection of cell components against thermal denaturation. Di-myo-inositol-phosphate, 
for example, accumulates at temperatures above the optimum for growth and could have 
a role in thermoprotection. Mannosylglycerate and diglycerol-phosphate, in addition to 
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their role in osmotic adjustment, protect enzymes and proteins from thermal 
denaturation in vitro as well or better than other known compatible solutes. While the 
pathways leading to the synthesis of compatible solutes from thermophiles and 
hyperthermophiles are largely unknown, there has been progress in elucidating the 
biosynthesis of mannosylglycerate and di-myo-inositol-phosphate. Fundamental and 
applied interest in compatible solutes and osmotic adjustment in these organisms drives 
research, which will in the near future, allow us to understand better their role in 
osmotic protection and thermoprotection of some of the most fascinating organisms 
known on Earth. 
 
1. Introduction 
 
Marcus Porcius Cato ended many of his speeches in the Roman Senate with the now 
famous expression “Censer Carthaginem esse delendam” (I declare that Carthage must 
be destroyed) until war was ultimately declared on this city in 151 BC. The Third Punic 
War ended with the defeat and the complete destruction of Carthage a few years later. 
The Romans slaughtered its inhabitants, torched the city and, by order of the Senate, 
ploughed the ruins under and then sowed them with salt to symbolize the death of the 
city. Salt is frequently associated with death and infertility of soil or of water, the name 
Dead Sea being one example of the ancient idea that life is killed by large amounts of 
salt. Indeed, the Dead Sea is dead to the naked eye, but under the microscope the water 
is teeming with life that depends on large quantities of salt. This review does not deal 
with extremely halophilic microorganisms, which are adapted to life in water with high 
salt concentrations up to saturated brines. Rather, it deals “with a pinch of salt,” but a 
pinch of salt in very hot water. The organisms that live in a little salt at very high 
temperatures also represent very special and enigmatic forms of life that deserve special 
attention. This review deals with the salt relations of thermophilic and 
hyperthermophilic organisms, the uniqueness and diversity of their osmolytes, and the 
effect of these osmolytes on cell components. 
 
Thermophilic and hyperthermophilic organisms, like all organisms living in aqueous 
environments, are faced with alterations in the water activity, to which they must adjust, 
in order to grow. An increase in the concentration of low molecular mass solutes of an 
aqueous environment always results in a decrease in the water available to the 
microorganism. The decrease in the external water activity imposed by salts or sugars, 
for example, leads to a decrease in the cell volume and/or the turgor pressure ultimately 
affecting metabolic systems and macromolecules. To adjust to the higher solute 
concentrations of the environment, microorganisms must accumulate an intracellular 
solute to reestablish the cell turgor pressure and/or cell volume, and preserve enzyme 
activity at the same time. On the other hand, microorganisms must decrease the 
intracellular level of solutes to adapt to lower environmental solute concentrations 
imposed by dilution; this adjustment implies extrusion (or metabolic conversion) of the 
solute to decrease the turgor pressure and avoid lysis. 
 
2. Strategies for Osmotic Adaptation in Microorganisms 
 
Microorganisms have developed two main strategies for osmoadaptation that appear to 
be completely different from each other. One strategy for osmotic adaptation, which 
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appears to be the rarer of the two, relies on the influx of ions from the environment to 
very high intracellular levels. However, the uptake of these ions is selective, since in 
contrast to the major environmental ions, namely Na+ and Cl-, the major intracellular 
cation is generally K+. The extremely halophilic archaea of the family 
Halobacteriaceae, that includes the canonical extreme halophiles of well known genera 
such as Halobacterium, Haloarcula, Natronobacterium, and Natronococcus, and the 
lesser known halophilic and anaerobic bacteria of the order Haloanaerobiales, have 
developed this strategy for osmotic adjustment. These organisms have to compromise a 
very saline intracellular environment with extensive changes in the composition of 
proteins and other cell components. Most of the enzymes of these organisms have a 
negative charge due to a predominance of acidic amino acids and are strictly dependent 
on K+ and/or Na+ for activity. Although these organisms depend on a highly saline 
cytoplasm for osmotic adaptation, some species of Natronococcus and 
Natronobacterium, accumulate an organic anionic osmolyte identified as sulfotrehalose. 
This compatible solute helps to counterbalance the positive charge of K+ and Na+ and 
contributes to the osmotic balance of the cells. 
 
The majority of microorganisms have not, however, undergone extensive genetic 
alterations as a prerequisite for adaptation to a saline environment. These organisms 
exclude NaCl and most small extracellular organic compounds from the cytoplasm 
through the accumulation of specific compatible solutes. Intracellular macromolecules 
have not undergone extensive modifications in these organisms and are, therefore, 
sensitive to high concentration of salts. This mechanism greatly reduces the necessity of 
extensive genetic modification providing a versatile means for rapid adaptation to 
osmotically changing environments. A large variety of microorganisms, ranging from 
bacteria to yeast, fungi, and algae, rely exclusively on compatible solutes for 
osmoadaptation indicating that this strategy is very successful. This idea is reinforced 
by the fact that some species, such as the microalgae of the genus Dunaliella that 
accumulate glycerol, represent some of the most halophilic organisms known. 
Moreover, yeast and fungi are unsurpassed in their ability to grow in environments with 
extremely high concentrations of sugars that, like saline conditions, require osmotic 
adjustment with exclusion of the extracellular solute. 
 
Halotolerant and halophilic microorganisms generally prefer to uptake compatible 
solutes from the environment over de novo synthesis. For this reason, organisms grown 
in complex media often accumulate solutes such as trehalose and glycine betaine from 
the yeast extract in the medium. Presumably, the same preference for solute uptake 
occurs in nature where compatible solute scavenging is probably the obvious and most 
inexpensive source of osmolytes. Solutes can be supplied from the death of compatible 
solute producers or from their release due to decrease of environmental osmolarity. 
Many microorganisms are unable to metabolize their compatible solutes upon dilution 
of environmental salt (or sugar) and depend entirely on extrusion mechanisms to control 
the increase in the turgor pressure. The excreted compatible solutes can then become 
available to other organisms. 
 
Many slightly and moderately halophilic archaea appear to possess a mixed type of 
osmoadaptation where K+ accumulates to high levels along with an anionic organic 
compatible solute to counterbalance the positive charge. 
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