This question paper contains 2 printed pages]

NA-22-2023

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(CBCS/New Pattern)

PHYSICS

Paper-XII

(Quantum Mechanics)

(Thursday, 7-12-2023)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) All symbols have their own usual meanings.
 - (iii) Given:
 - (a) Charge of electron (e) = 1.6×10^{-19} C
 - (b) Mass of electron (m) = 9.1×10^{-31} kg
 - (c) Planck's constant $(h) = 6.6205 \times 10^{-34} \text{ J.s.}$
- 1. What is probability current? Show that:

15

$$s = \frac{-i\hbar}{2m} \left[\Psi^* \frac{ip}{\hbar} \Psi + \Psi \frac{ip}{\hbar} \Psi^* \right].$$

Or

(a) Explain photoelectric effect in detail.

- 8
- (b) State De-Broglie hypothesis of matter waves and explain De-Broglie wave velocity.

P.T.O.

WT	(2)	NA-22-2023
----	-----	------------

Obtain Schrodinger wave equation for Hydrogen atom in spherical form usingCartesian coordinate and give the separation of radial part.

Or

- (a) Derive an experssion for energy of a particle in one-dimensional box. 8
- (b) Explain momentum quantitation for a particle in one-dimensional box.

10

3. Write short notes on (any two):

(a) Heisenberg's uncertainty principle

- (b) Eigen values and eigen function
- (c) Particle in one-dimensional box wave function
- (d) Magnetic quantum number.