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v !m<33mﬂ 3 ining all the atoms and passing through the boron atom. The BF, molecule also
—\< msﬁ_ m—.o :U -—.: mc—x< ) esses three C, axes of symmetry in-addition to the C3 axis. One such axis is shown in
MO R O O IO O STy Teenee Mm 1 (b). The C3 axis is called the principal axis. In general if a molecule possesses C, axes
4..»\ Y tereeca,, .m ¢ jfferent orders, the axis of the hijghest order is known as the principal axis. A H;0
& ¢u/a‘7 : 2 ecule has one two-fold axis C, whoreas an NH; molecule has one three-fold axis Cy (i.c.,
..koﬁ&« (/oc, Symmetry INTRODUCTION Sy tion axis of order 3), as shown .in Figs. 2 (a) and (b).
o metry is a ve inati . ;
¢ ;T/ w ow,vv>35 Gtotkword wv‘u.ENHMwsﬂm::m Phenomenon in nature whic, con) m?om_.on 1Cy
A o o R TR » thatis to measure together, Math . : 7
R oL 7Y is called Group theory. Its f : ematjy H ! H
K ﬁzf w,v,sf century by E. Galois, Jord ry. oundations were laid iy 4 N\
s />c%a /g...v Wb awardsd swo Homo MMWE_H. m.v._a,m.. Cayley and Lie etc. Murray no_“ M. Ca S.Coly c—i+G 1c
R SN of ‘sactia) 22 ¢ prize for applying symmetry to t} gt 4 Ca = : ,wm : /\ 3
X SN particles and the postulation of Ly £ he n._pmm_moun ; i i £ 3 RN ;
x}» 7%»”3@%@33 and hadrons - . quarks which are 'the constituentg ””N..u ) : = m » : » = ./.. .,,i.\olz..vMON
R e e — 4 H DG TN/
N SYMMETRY ELEMENTS AND Sy . e RN ] ik S S e
Q/P.( Symmetry Element A MMETRY Ovmmb,_._czw Uy m\@ﬂ S I\ -_. m /I X
> 3 5 . . .- A 2 i H H H
va.7 : as.a line or a plane or  point nvwﬁﬁ.ﬂﬂuﬂﬂﬂmﬁ 'S @ geometrical entjyy A e 28 . ".v 7 3C; - N
: % _:cm&.mh.o: ~..m performed. Peration of rotation or reflection fig. 1 .?AWV ._d.o c u:wz mm n .?%M“TEE axi A Nc& of Fig.3. Cpaxls o_l_6§_o=~5 cosun:p
~ . et 3 Kz 4 \ S . 3. 'n
ymmetry Operation, A symmetry operation is — - = ~{b)Lraxis of H20 ‘molecuile, (b) Three-fold 2
molecule such th 2 movement e
i { that__the resulting configuration of th of the V . symmetry in BFy axisi(Cy) of NHy - =
indistinguishable from the original. The mol ¢ molecule: jg § molecule.; Tl =

. - _ configurati ; A I ecule may assume an oqy b . . =
s vm..».ommha_wﬂ%m:mw:%”M_.M”r Mwnmmvnﬁ ucms. Symmetry operation m.__“._,mw_,o” § Note that there is only one two-fold rotation associated with a C, En.mm because clockw!

molecule which is unaffected by w: :“wqm shouyld be at _wmm» one point in the. ._.m. mJ..Eon_gmmo no».wngm are mm.m:monr mo.im<.2... «wE. a 93@..?5 .m.x_m.ow two symmetry
elements intersect at this ST e m%BEme operations. All the Symmetry m._,nconm. are associated, one vw.:un .wwo._.. rotation in a n_on_?u:mm direction and the .o::w.‘

. molecule during th eoE.mmv : - Thus there is no translational motion of the §20° rotation in a counter clockwise direction. The ﬁ:bn:.uw_ axis of vmunmnw. molecule is Sy

There are five e om A symmetry operation. gix-fold Bam.. Ce: perpendicular to the regular hexagonal ring. Also the ..Oa axis vmqug&nc_t ;
operations (Table 1) Pes of symmetry elements corresponding to &EE.&Q b the molecular plane and passing:fhrough the centre of the molecule is a Cy axis as well d
: § P 0, axis (Fig. 3). The symmetry ‘operations.associated with a Cg axis are :

Cc C; ' 'CG ¢

Table 1. Symmetry elements and Symmetry operations

= - |S.No. m!ﬁtuopq €lcment mEmnﬂv. operation —— 3 .Ow On Ow i E
1. |Proper axis of rotation ) Kotation by an angle 0 = 277/ abou tils oh A sphere possesses an infinite mumber of symmetry axes (along any diameter) of a
2. |Plane of symmet 5 ssible integral values of n Ponfemmmeeneaae s
Ty (0) One or more refléctions i [ 8T >
5 3. |Improper axis of rotation Rotati = E:.u DL «—2-Plane of Symmetry (o). A molecule possesses a plane of o
rotation-reflection axis (S .w_. aeiationiabout the axis followed by reflection| fiymmetry, if reflection through the plane léaves the molecule . -
4. |Centre of = _s.w «..:Sm.v erpendicular to the rotation axis | func anged. The plane containing .all the atoms is known as | ﬂ
o b K msf.m_‘m.m.ow Mvdnao:u. S Inversion of ail atoms through the.contre of] §moletular, plane. m.on.wumgsnm..qnoi.mu contains'a molecular plane ..o T |
S N iy oJ re (@) symmetry - - SN .~ | fand fourmore reflection planes. BF;molecule possesses two planes = % A
6. “|ldentity clement {E) | This operation Jeaves the molecnle | jof symuzetry, the vertical plane (a,) and the.horizontal plane {c). ”_mﬂ.umamwm_uum__mn_ﬂ M.M |
: unchanged. S e The 6, plane contains_the highest-order rotation axis, i.e., the C3 e lea el |
w.~""1. Proper Axis of Rotation (

: > C,.).. Aholecule ] 5 = axisi o), is perpendicular.to. the Cgy axis (Fig. 4).
axis of rotation of the order n if wo..m.zos about »rM.MuM”_who nw,o”womﬁ wwnmﬂh “There-is-the dihedral plane .o, which is a vertical plane that bisects the angle
- leaves tho molocule in a configuration which is msﬁhzuwimrmzﬂ Somithe betweén the two Cp axes. Dihedral ,v_.g...-..:.w present only in molecules having more than

original one. Consider an example of-BF; molecule (Rig. 1) in whi . §one Cy axis. SeiEe So o > ; |
2 . . v 8 Cj axis, thal is, an.axis of order .u)wE&.— is womvumﬂaﬂhu“wﬂwmmuw_z“““ (+~87 Impropor Axis of Rotation(S,). A mélecule is said to possess an improper axis of
§ T .- : S P s el S Lin =t Fotation of order n'if> rotation~about' the axis by 2r/n. followed by reflection in a plane
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le'in an indistinguisklable position. Exay
e il ﬂ
o aXis »:.n_,»ro staggered form of etihane which uowmmMmEowwﬁ.

allene which possesses an S
axis [Figs. 5 (a) and (b)).
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Fig. 5. (a) The S axis.in allenc, (b) Sg axis in staggered form of ethane
4. Centre of Symmetry (i i bt oordin: .
v (1) If in a molecule the coordi SRLA
i ) in
mn.w.nv, om.o<.mﬁ< atom are changed into (-x, -, -z) and the molecule mmu_wmm H” lf/o../\uz
in an indistinguishable position, therr the point of 6Fgin1 . %

orgin; Le., (0,0, 0) i
called the centre of symmetry of the molecule. mxmBEmM are vm_um_

Fig. 6. Centre of

voEoMc%an &mnou.in molecules and trans-1, 2-dichloroethylene (Fig. 6) mﬁ”ﬂwﬂn_z
- The Identity Element (E). All molecules possess an identity IChlorosthylene.

clement which does not do anythi
ything to the molecule. A i
) f 3 particular symmet
moo_EMwoM.mu Em.mv.q._mﬁsm.os n.vvmq.mcosm. A C, axis generates a m.M“b of Nﬁ“wﬂmwp
w G Cp ... CJ. The Cji operation is equivalent to the identity operation :
12— . e, :
: Note ?w”z_?br. » which has S, axis as well as C, axis, possesses all the five elements
ol symmetry. A square planar AB, type mol le : Ce
4 molecule has 13 elements of symme ;
e : ymmetry (E, Cj;S,,

,» 0, and 1) and 16 : 1 )
i O, ) anc symmetry operations (E, C .ow. G2 m“. S3,4C), 40

v» Op and #).

DEFINITION OF A GROUP

A group is a collection or set of clem i

A . E ents which together with some well de
neSo:.NSw law obey certain rules. It should denote numbers, matrices, vectors and mﬁwwn\“ﬂ
omo_,m:oam. It no,._E be ordinary or vector addition, ordinary or matrix multiplication and
symmetry operation etc. Group was defined first by Arthur Cayley in 1854 :

Group Postulates.

The complete set of operations n.S.E.w
elements A, B, C,..
satisfied : :

1. Ring Closure. Two clements A and B’ ine t :

1. Ri; . d : wd B of a group co { i .
C, which is also an element of the group. £l RO S

2 : sa mathematical group. In order that the symmetry
- form a’ mathematical group G, the following conditions must be

o
It means that the application .of B followed by A is ._...n.:?w_gn to the application of C.

ik :.«»ww BA, the elements‘A. and B are said to commute, .

2. Anelement combines: with itself t6 form another clement ¢ a\. .Sm group et

y aav_.g:cﬁ.

3. Identity. The group must contain the identity element E which commutes with all
elements and leaves ithem anchanged : : 2
EA=AE=A
EB =BE =B, etc.
of the group obeys the associative law of

—

4. Associafivity. Every element
it A(BC) = (AB)C :
5. Inverse Flement. Every:element A of a group has an inverse w»L whichii5 also an
Lement of the gronp. The element :and the inverse combine to give the identity element.
AAl=ATA=E
Addition or multiplication or a symmetry operation can be the combination process of
ibe elements of a group- The set «of numbers between —co and + e form a group by the
_,u:__.mv:nnmcu process. Notrr that zero is not included as an element of the group.

ilypes of Groups.: . — .
1. Abelian and non-Abelian Groups. A group is said to be Abelian if all the elemen
ommute and non-Abelian if-all the_symmetry elements do not commute with one anoth
#ater molecule belongs te-zn Abelian group and NHj to a non-Abelian group. ;
2. Cyclic Groups. A-group is said to be cyclic if all of its elements can be genera
from one syminetry -element. Thus A, A2, A3, ..., A" form the elements of a cyclic group; A
A" = E is the identity element. In general, the roots of the equation x -1 =0dJorm a cyN
goup. Note that all the cyctic groups arc Abelian. i
3. Isomorphic Groups. If two groups have the same
order and if the forms of their multiplication tables are the
same, the groups are said to be isomorphic:
Order of a group. The ‘total number of elements ofa-
group is called the order (k) of the :group.
Example. Consider-a waler malecule. It has four symmetry
dements, viz, E, Cqf2), 0,(x2) and 6, (yz) (Fig. 7).
" We can “easily show that the product of any two e
symmetry elements is one-of the four élements of the group n_w.aa.z_u ol H20 ME
Ca(2) S,(x2) = 6,/(2) (Table 2).

—4

Table 2. Group mulliplication 1able of the symmetry operations of H;0 mblecule.
_ E © Gy ) o, (y2)-
E E A Cy(2) . 0,(x2) we..ﬂ yz)
Col2) Co(2) R <Y 0, (y2) 0,(xz)
0,(=) —Tay(=) R ] o s )
, o’ (y2) o, (32) 0,(x2) Cal2) SEnE _
Ysus-crour. - ‘ : _ ¢

A subset .of element of a group forming a group of smaller order is referred to as @
sub-group. If the addition of a symmetry element to an existing group produces a new group,
this new froup is called super group of the existing group. Thc set of all the elemenis of a
group is known as an improper or trivial subgroup. The subgroup composed only of the
identity elenvent is also a trivial subgroup. . i3 i :

LT, )

%.r. O s o L S N i) £ 5 T N LS : o "
: S L DR LT SR AR VB Y58 S R P e T



A subgroup H of MJ roup G
elements than G s EToup G is called a.

Cy(E. Cy, Cs, Omv. 15

. v

. —870up. A subgroup whj
BTOup is known ag an invariant S Sl
normal subgroup of Cs, (and alsp D,)

ABg is reduced
(A-B) bond le

is, by descent j
.?_ given group. For example, for the p
4 0y, Og, 0y, leading to (besides tw
D,, Cyu, C,, C; C, ete.
ch.w:?:m)mccmqocv.

elements is referre
infinite group (h = oo

ements o
are'E, Cy, C,,

group, symmetry clements
and £), subgroups Such ag

subgroups Dy,

4k poiny
0 :.Db_‘oﬂa_.

d to as finite Broup whereas ()
). Consider finite Broup of orge,.

og rule being algebraic multiplication =;y_] The
erse of 1, is ~1, of i is .

e =i and of -1 is 1 otc. Note that 1he
arger gyoup 1,-1,,-i, Th =1

rof the group i I i
¢ is no'id

h =4, that is 1,-1,i, -, q,.:o combinj
identity element js 1 and the inv

group (1, -1) is a part of the |
the group 1, -1, 4, -;. The orde
{, -l is not a group since ther

12

—sc_..:v_,._o>.202 TABLE
d by a multiplication
een the elements of the
ations is reflected in the

Each group is characterize
table. The relationship bety:
group. for the binary combin
group multiplication ta

Table. 3. Muiltiplication tabje for

ble. Here the operation
in the top Tow is carried
peration indicated by the
e first column. The result
the body of ‘the’table; Each
rs only once.in each of the
example, consider Table 3,

indicated by the elements
out first followed by the o
appropriate element in th
of combination is given in
element of the Broup occu
<ows and columns. As an
for a group of order 4.
Group of order 1. The

the group {1, j, -1,-i) :

1

-1

H.

i

-1

-1

=i

=i
=i
|
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:
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1 ...

identity element £ alone will constitute a group of order 1. One
itself is a group of order 1. e o T :
Group of order 2. A group of order
clement E and another element say A,
Group of order 3 is a ¢
order 4, clements 4, A2, A3, A1

2 should have two elethents,

! .
yelic group with elements >.>~:¢a =X) and in a group of
(= E).may be visualised.

\3 ¢
CONJUGACY RELATION AND CLASSES

ﬁmm:c_w. the identit;

A and B are said to be conjugate to each-other.

If Aand X are the two elcments of & gr
also in the same group, then B is called the

of A by

oup obeying the relation N.&Nu B where B
similarity :.wumnca»mon

¢ and

is

L erfc the similarity transformation of the C, operation of Hy0 )
3 4 class.”Let us p t
Wellegiih all the other opiprations.

its Lnver the
class. A rotation operation n:& its inverse belong to

oo

&
“fyperations generates \iate dass. Thus E, oy, and i belong to separate class. In ap Abeli
1 is in a Se, : .
gperations 18 1n metry cperation belongs to a separate va.m et oy
group, every sym / fa.closs of group must be an integral factor of the order of the
, Notethat: H}n&/ﬂmmoc tion method is too claborate to find the classes of symmetry
imilarity tr ans{ormatio 5
group. The sim

METRY AND GROUP {THEORY

/uo .
§ 1 Is ar ) T j ther iy td .
¢ hich are conjugate to one ano said ¢
&_N emern m-a oup i
Oﬂﬂumm- > mNN \ e

\ ECyE=Cy 3 0,'Cy0,=Cy 7.3
21 sl =
_ (0,2 Cy0,=Cqy 3 - (Cg) Colp=Cy : o
ate Mﬂwmm since the similarity transformation of C, with g the
belongs to a separ

C.. A symmetry opcration which commutes with all the Symmetry
1
2 At

an

5 “rith high symmetry. : i
operations in n.,oamnaﬂﬂ «.Mnrn”gm:m‘.?c Classes of Symmetry Ova_..u:ojw .5 a Group,
Alternative &oﬁ_: ich nrutes with all the symmetry operations is in a separate  —
A symmetry operation which comm same class if there are n vertical planes —
o vnwug&ninw Owhﬂ:.ﬂﬁﬂ improper axis and its inverse belong to the same class if there
% hnoneration an : licular C, axes.

R %..ummbh ﬁM,Mtuomhmc_, ¢<cN reflections about &:ﬂe:.im—:ca belong
o 33»..5:%.% nﬁmﬂm.‘mw a third opcration which interchanges points on the bwy
to GW same S a r '
1 to verily these -
Ay le can be considered as an example )
Squate planar AB, type molecu . e ou_m» mm;ac e
les. This molecule has 16 symmelry ovo_.u:osw. % m: ; .n_ 5 mmuv Wy
; is : e
Enmmm wever, E, 0y, 1, C} belong to separate classes. Cj Ea_h: m_mo.i Sv »ﬁ e
o o~ mw..:n.n Wn,_.o are four wertical planes. Two Cj operations a ocg %mm m.;s
same class ce y LT T el
orrespond to one class. Two "C3 opcrations about the Cp axes belong ey
Mv re Mm a reflection operation. Two reflection operations in two g, plan
m v .

planes) belong to-one class.

POINT GROUPS 4
yom A Iroup.
, i i . ¢ bined to form a molecular &
Sy / operations in a molecule can betom o s
Thi Ewhrwmnﬁgawwma hwmﬂ group since all the symmetry elements of pr.mo_wmsmwv.ms_a =
n~m mwuzwvoa point which remains fixed under all the symmetry operations.
at a

-

Table 4. Point groups and symmetry elements.

.Point | Symmetry'| Point u - : S i elaments
.mna-_v elements °| group- 5 R ;
Cy: _ E h Cyn ™ {E, Co, 04,1 ; X S
AT : | Dyn |E.8Cp 30,0 g =
( ,r C [ Dy, JE.2C; 3C2 (L 0 Cy). 0,00 28y e
m Ou E * Dy |E.Cy, 405 (L to Cy), 20, 204, 0y, Ca, S (coinci " _...l\.\\ :
— ﬁan o7 ..r be— N.u. MA\.m. mﬁww (1 ..@ ﬁ.ﬁ_w. .@Q-.. wn_l.. Op ﬁ.s. ..V.Pu. N.ﬁo. 3 \L.
% : : |
i ’ TN ST —m.;ou.mn&. 38 (coincident with Cy) 60y e .mrmﬂaﬂ.\\. .
M. — < 01. E.3C,. 4C;, 38, and 3C, (both coiicident 59.5.( e
e - 7= |6Cy, 45, 30,7604 X >

-oh o
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very high symm

etry. In fact, they haye translational
molecules. The molecular

the point groups for crystals

point groups are represented by the Schoenflies symbgo

METRY AND GROUP THEQRY

Symmetry which is not found AR ~ :

lecules : : :
PtClg?%, (c) Hy, {d) HE, () HCN and (f) CoHy.

mﬂ_mmwm-@.unv 6%» ﬁn#ﬂu&o&&v. It belongs to the Ty point group. The symmetry

% .lements are E, 4C3 -3Cy, 3S, and 60, (Fig. 8).

are denoted by m?laa::.anzhn? symbols.

SCHOENFLIES SYMBOLS

s i S C C.S
is called a point group. Bach molecular is i , C. < 2 2hos >
point group is identified by a symbd ! 23 > :
mnrOmb:.o.m uosros.gww consists of a capital letter and a subscript. ;Mvmm wu.m.“nno Ty \.\.‘ a_-. i
C : Simple q.o:_co:. axis. D : n-fold rotation axis perpendicular to Pprincipa) N.mwﬂw : j mon : el
M"Nogn_on.nmanns_o.z axis. T, O, I : Symmetry based on tetrahedron, ogg.mmmwjf onf,ﬁ. I..“I\._w op
ZWwwwm&J: Smeooio_u‘. The subscript. indicates the order n of the principal axis and 3 _mV .w\" gt
whether plane of symmetry octurs. s : Only plane of symmetry. j : Only centre { Symmiets; i 5
n Only n-fold rotation axis. : 2 T AR : g - \ _ \ /.v :
. = = i
nv  : Vertical Symmetry plane g, that nomww::m principal rotation axis,. T %
nh Horizontal Symmetry plane cj vm_‘m.g&n&m« to principal rotatiun .axig ( I».'ﬂu lrl.x
nd . Dihedral symmetry plane 6, perpendicular to principal rotation axis, H e e e g = o o
Table 5. Molecular point groups and Schoenflies symbols. ——— . m\u. e oy emerisA T _Fig: 8. Symmetry elements of the r i
Type Schoenflies [Generating| Order E 1 c ) = T4 point group. peranane e £
’ xam - : : SR B
: : mv,M.vo_ set - |of group =i e —— (b) [PtC1 (Square planar). This molecule™has mmnlwmumqwﬂwﬂ.%éwm AD N
oW symmetry 2 E T~ |CHFBI nmetry ] = ; ; lements are E, Cy, Sy, 4C9, 40, o) 20
Point groups C o 2 |ONCI, NH,F eyt belongs 40 ‘the D, point group. The symmetry e - £
s » VK e AR (Fig. 9). - ;3 e i 5
C; i 2 [BrCIHC - CHCIBr 3 C;=8, .. | (c) H, linear with a centre of m%::.ﬂ&g @®). Hy woﬂo_.,mm. m.vo the D_; point group
Axial point C, c, [0, N A, ] [t nan the symmetry elements B, 30 29, o1 80 e e SR D) oy
groups ¢ C,o, 21__|NO,, H,0, CIF,, NH,, BrF, Cn=0, (d) HF Dnuouu. without nmﬂMﬁaOop. mw,B.m Sﬂoﬂm_ MC longs g oy
Ch CRe, 2 |B(OH),, IN(CON), ™ Ca=C, and has the mwBE..ma mnmaav».m.., D wB o n X T ”
.WN& Mn; 2n _OQAZOan_uu W—Hﬁ.vn s A.lu, o 3 “. IN—P Oy . g el .
Dibedral D, Cn Cy 20 [Gauche form of C,H, Dy=C, : g w
point groups D CnCy0p | 4n_|CpH,, BF, NOy COF Dip=Csy »Ce :
Dpq Cn Co04 dn H,C=CaCH,, q.m_mw: Dyy=Coh p IlOI.ZI'Ol
Higher T C3,C, 12 [CH,,SiF, Angle ‘between e z N /[ wlv X
symmetry T, CSs 24 [P, CIO; C; and G, is 25 TN 2t '
w..ma”. 7 CRCN 24 |g0? S4:74% S R fes . S t
i) Cubic i » 2 - 4 L5t R : S Fig. 12. Symmetry elements
.10, mmetry elements Flg. 11. . Symmetry elements g. :
2 CaCs # |crcoy, TR Angle between of B D uwa.aa% nHa of the: G- point group In HF.  of the Cv polnt group In HCN
Oy CiCyi | 48 Co(NH,¥* 'SF. w\w .wumo. e (e) HC = N [linear without a centre of qu.un.xo”q @ ot
= | K eiadi6Se6 e W T - 4 1t belongs to C.., point group -and possesses the symmetry
) DR Sacs ol BRI Angle between| { clements : E,C,, and wo, (Fig: 12). - - : -
Icosahedral T CHCH: 120 - 1C; and Cg is| (H HC=CH {linear with centre of symmetry, A-.z It \—> oy
: : 37.38° | belongs to the D point group and. has the symmetry"
Infinite point|  C_ cx = |HCI, HCN . 3 - elements : E,2C,, =0, O, i, 25,,, and =C, (Fig. 13). - °
groups. Linear CHR Co, 0, - [CO, CH, i ! Exercise. Illustrate diagrammatically QR:. Hy,0
Eolecules. D_, GRIC o S : molecule is Abelian whereas NHg molecule is non-Abelian. :
Sheial M =21 el — e — 5 Solution. A molecule is said to be Abelian if all the
nWo: :mom .Qev.m. §: =% : FoR TR “|"- % symmetry eleménts . ‘tommute_ ‘with .-one another and - Fig, 13."- Syromelty elements
PRI Kn. . [CE)C) i Beimins ono 1o e d e S : §  non-Abelian if ‘they do not commute with one ouco.smm.. In "-'of the-D-p point groip 5.91?‘..

v VL Yz 5 N vt



" represented as |
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H,0 molecule (Fig. 14), the application
of C} followed by o, gives the same
configuration as the application of. g,
followed by C}. Hence, C} and: o,
commute, i.e., 3,C3 = Cio, .

Thus, HyO molecule belongs to: an
Abelian point group (Cy,). .

In NH3 molecule (Fig. 15) -the
application of C} followed by o,! gives a
different configuration of NH; molecule
than the application—of o, followed by
Clie., ! :

101 1928
g, C3#C30,

O
N

\

i 11Ca (o]
y Hil Y TN
H m T_N . I. Oy
iyl / e
: ; 0,
79N RN
Hy @ Hp ! 4 ty
H m 0. IIO_u
-Gy alwv. S = S
2 " Fig. 14. Illustration of an Abefian group.”

so that the two symmetry operations do not commute. .:u.ca. NH; moleculé belongs to a

non-Abeliar zoint group (Cj,).

= Cs 3
S e aemfl/ A v\\
: V\ ;
= n
>
H V\
Y/

o,

5 QeL
7
.4

I

i

Fig. 15. Miustration of a non-Abelian group.

 * MATRIX REPRESENTATION OF QnOcvm
A matrix is-a rectangular array of numbers or symbols for nymbers. The set of matrices
corresponding to the symmetry operations (or the symmetry elements) of a group is called its

representation.

Symmetry operations. such as rotations, reflections etc. are coordinate

transformations which motify the mathematical statement of the atomic positions-rather
than the positions themselves. Combination of group elements involve matrix multiplication.
Such sets of matrices are said to form a representation of the point group.

Each atom in a molecule can be specified by three coordinates x; ¥-and z; which defines
the position vector- from the origin to the particular atom i. From these coordinates_the
position and orientation of each atom in space can be exactly defined. The vector can be

PRSP RTeISERSRE AV S

iected to syounetry operation,

7. z’;. This
new ﬁeQ 1
ansformed 10 v i d
. itten as a set of linear equations =
writien .k\..HD,:R.‘TQqu\—. 132i
X + QNN.%.. +ag3 z;
% +azpY; t033%

¥i=021
/=
Z2;=031

) (e %12 %13

ly:l=laer @22 923

1z a

1z \aa1 %32 %33 §

2 The sents a;’s form 2 transformation

s m@.ﬂ.. hmmﬁwﬂnwwwww%cg are ﬁm_unmmm:pm@ by

i all 'syR 3 ! b
Muwm_‘v..wﬂ%m»mod Mﬂnnmu. then paint mﬂﬁcmw evmevmowMHWo”u
Jm._,l i i identity 3
; ces. Far exampie,

E ﬂ_um 2 &uw;mwwhﬁﬁ”“ unchanged and hence correspond te

, leaves X; ¥.: : :

" transformation matnx

Yi

Z;

or

as
A 0 0
E={0-1 0
o 0 1
Now, consider the rotation about an axis, Cor »Mu
{llustrated in Fig. 16: In a set of x,y,z axes, a unit vector
V, oflengthr ;sTotated at an-angle, ® and changed to a new

vector Vo.

X, =T S®&G Xy =

T+ sin ln—{a+ @)); or ;g =rsin (@+9)

yp=TC0S & =yg =7 008 In—

e IR, T P

- - * Vimins g Do’

transformation of coordinates

the coordinateg iy
Yo
can gy

X, =rsing
yy=rosa
Xy =rsin[n-{as
Yp=TC08 [z~ as

pomeeeeee¥P- 1)

Fig. 16. Transformation by:
symmetry axis Qo). The 8«.&
of rotation is Cla) al zaxs.

E.+6zon.<uuﬂ8mﬁo.+£

Hence, x3=rsint ; Xp=T sin (0 + @) or xg =r ( sin @ cOS @ + oS @ 5in §)

e waummcuﬁ... w.uwwaomﬂqisvo_.w.nnloomnoouc..manmsﬁ
i So, Xp=%) cos @ +¥, Sin @ ;
m yp =) €OS ® -y §in @
i Hence rotation by an .angle, ¢ gives =
m »wlxdnome‘.%ummue
M Y1 -y Sin@+y,cos®

ey ST SR o : g by o

.3+ . and z coordipate remains unchanged. This ncgcolu..ocn_dccu can be n%_,mmn:i ¥
i as follows: s
3 oa ‘cosp sing O
-sing cos@ O
i 0 0. A
; ; . s fr Gyl
! 'Thuswhen rotation is at-an angle 180° or ¢ = 180° the rotation
3 o
i 7 s cosi - sinn O -1 0 0y
- : ~sinr cosn Qfor {0 -1 Of- o
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- SPECTRG 3 o %zgﬂm.* AND GROUP FHEORY - o ; X BT
! When ¢ = 120° or 271/3, the matrix will be of the form 5y |h. 5 5t 3 ”
2 - phA ) 2 2
ﬁ cos .W: sin 2 0 g @ 0 a0 0 3 1 E 3 1
2 g 2 2 Q.—NH.,.O -1 01; Cg= |.|wn .Mu 0 g O3 = ||N| IN. 0
- sin <& cos 2n 0: or |- AIM 1 e 9o 0 1 ] :
2 el i 0 . \ 0754 10 1l 0 00
: ﬂ 0 0 1 ﬁ 0 0 L Representation of x,y,2 coordinates-under- different -symmetry operation for water
, ) Zoeﬂ.mf_noum:wmn reflection in' a wmirror y ¥ molecule is illustrated in Table 6. pee - e
plane o (Fig. 17). The vect i - -
along x, y, z axes. Hence, w—,m’pwm directed 2 (%= y4) % Table 6. Representation of x, y, 2In Gy, point group In H,0 molecule.
> N Bots o 15 r H ="M g 0 = :
Xy =rcos 2f;x9=r cos hw = wuu or —r sin 28 B et +..\\\q.v-ﬂﬂ»& - Cw e s 4 .G».._ .ql —i- =
5 ; . = o 15 X2 Xy < 5 _x ] B =1 1 3 -1 ;
anxm_bwmulwwuﬂmwth.Iwﬁ or r.cos 2 Xy =1 cos2p —y ) 1 T : =3k -1 L1 -
and z remains unchanged. usEtransfor e—— y, =rsm2p ! s i 1 e 1 1
matio trix - ; - .4 : - - - -
Ewhm_“m ImaLx Eam.ﬂ reflection through 102 (X2=¥2) bt ) To sum wup, the molecular point group thus consists of certain ortho,
o8 ww sin2B 0 sl “Yo=rsn(Z-2p - 1 yrapsformationsia-three dimensional space. The representation of a group is a set of ma
Sl 2D ic08 2D150 : SR P i o 5 ions of the group oh the basis set. ~ - - :
0 =0 JDLA SR e N Fig. 17. Transformation by a mirror plane s, whiclt EXpresste ..Bnﬁu .mubwﬂn.wﬂw the c.vmu.ﬁn:.uuw 3.. eigroup 2 ; by r 3
e O N s - The z-axis lles In the mirror plane. o " REDUCIBLE REPRESENTATION OF GROUPS _~ . g e
3 x 3 matrices which forms miwm s omv s a group. Apparently one can obtain a set of w.mwﬁmmuﬁnoa of a group consists of a set of matriceseach of which correspond
represent the poigt group presentation of any point group. The symbol I is usedto ; symmelry element in a group and these matrices combine in the same way as the
Matrix wovnommuﬁ.uomon of Symmetry O . ; S elements do. But these are certainly not .nrm,Emasm set. The BB is to find out the mosh _
Group Cjyy. X perations E,Cy,i,0; of the. Point ¢ fundamental set of matrices from which other representations can be %1‘.:&. Thus it g
E C : e - - possible to -simphfy a matrix representation by -performing the same &Eﬁ—ﬁmﬂ
8O0 1 m ‘0) (1 .n%. 0 (-1 ~o = : transformation ‘on each of the matrices so that they are all reduced to thé same

Point group, T={0 1 0 0= =10 01| BlioRs180 0 diagonalized form. The original representation is then said to be reducible. In the redutidn
0 0 1jJ(0 0 1/J{0 0 -1 0 - .|0u = : of representafion, the block diagonal form for 4l the matrices corresponding to the sym
. Matrix Representation of Symmetry Operations in C,, Group. - ~ operations of ‘the group should “be same. The lower dimensional matrices formed_fro; e

© o

oA

E Cy @ 5 H block diagonalized matrices themselves form a representation of the group.
80N G 0 o Vg A Let A, B, C be the matrices which form the representation of a group and X e
r=lo 1 o . Nz -1 0 0y 1 0 0 SIS OES0 { similarity, transformation .matrix of this group such that X Ax=4",_X7 o
e ..mmua cost Ojor |0 -1 0| (0 1 O 0 -1 0 . x-lcx=C. e s :
ple wm : 1 : M oo 1100 -1/ |0 0 -1 ¢ Then if X is tk= proper transformation matrix, we have
i csn  sinm 0) (-1 0 0) fay 0 0.0 Th%a 0L 0D
Zmoq%- m_nmma ISMM: Ofor(0 -1 0 o, = i oo leso 56 # : ._.p% n.w. 0 o‘_. : op By 0 0 :
T O\ 0] e oo Qb a0 i) xlax=x=10 ¥ o 0 o XUBX=B= 0 by 0 etc.
Matrix Representation of Symmetry Ovom.wmouwmb Ca oz.v:v 7 % <10 S 0GERO T g : S5l HORER0 R0 by . s
Consider NH i = & ; — The newmmatrix A’ (or B") is now blocked out along thé diagonal into smallet matrices -

for Ow

“

3, 8= 0 for 0,3 ==602for 6, and B= 60° for a5; ¢ = 120° 1 . . .
i = 2 e (5 S22 a’y, @9, ¢'3, @ 4 (01 D'y, b'o, b'3, b’,)-etc. with the off diagonal elements equal to zero. Hvsm..

183 o Sy : a given set of matrices form a reducible representation.
5000 i F g : ik IRREDUCIBLE REPRESENTATION OF GROUPS :
sl w 180658 Con Dty 01+ nw S 0 A 1f it is not possible to find a similarity transformation to perform the reduction of all
S E Al e the matrices viz;A, B, C,... to block diagonalized form,-the representation is called an
2 5 : . o 0.0~ 0. ‘o; 0 (LS = S Emmcnmd_m.wnm.«m,mnjgmow (IRs). S e o R 2 S .
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- Tepresentations is given by Great Ortho

d 'nv‘/ '

T A

Exercise. ], lustrate-red

~.
.

Q)
e > to matrices of different irreducible 322295,/
Vask nding : N
2] Elements corTespo : :
/ ucible and irreducible representations considering Cg, point 8rouprzy hogonal < educible representations and E from Table 6 55 Cy, it
Solution. For C3. point group (as described earliar for NHy), write all Bmﬂomﬁmﬂhp Tor example, sélectmg T from equation (2). i
-3 : e
general form . B ¥ sater molecule) we hav N eyl R(-Ty=0
21 4312 0 i, 0 and 8, =0, then
B)=lag; agp 0 & < ondn 270 8 =02and 8, =0,
: m” and ‘n + Ymm
4 @& o i Z AT ZT; Ry Tj Ry =0
: [R| 0] P R
or  symbolically as ®)=| OI_W_ el i ebiceiotthe e IR o
: Elements 0 2 Bmul * §5.=13.,. =1, then :
where - Sqnﬁ: M_Nu and R7=(1) - = o e S 3. Hi=jm=m »bmal.unm.\ L O
21 Qg9

It means that (R) matrix is a direct sum of (R ‘and (R") and separately give 5
representation of C3, point group. The Point group is usually denoted by I (gamma) and h,
direct sum is written as

= n-Thyir .
where I3 is the aomammmsﬁmmga

: (R), a two &Em.ummc.uu_ ‘matrix and T
representation is reduced t i

by (R”). Thus
0 & sum of two dimensional matrix T

nal < ['3 and .one dimensional matyix
I’y cannot be reduced further. Thus, both ' and T, are irreducihle. -
representations, _ : -,

The number of irreducible representations (IRs) is equal to the HEBIUQ of classes in lhe
group. In C;, point group there are three classes of elements namely, E, 2Cy and 3¢,
Therefore, there are three IRs o i

f Cg, point group. Note that in Cy, point group, thers ar¢
four classes of elements, E, Co, 04, 9, thus it will have four IRs, R

GREAT ORTHOGONALITY THEOREM .

etween .the elements of unit

, ary- matrices used to form groyy,
gonality theorem (GOT). As the name indicates, the
‘theorem shows orthogonal relationships: that exist betweer the matrix elements of the
different representations of a group. The theorem is valid for

representations of afiy group. :

all nori-equivalent irreducible
Mathematical statement of Ooe is - 2

[T Rl 1T R =2 5,5, 5,
R NP A :

é..'w. (1)
where  h = order of the group. ~ - A .
l; and I; represent the dimensions of two IRs (i and .«.v of the group. :
R = various symmetry operations of the group. - B R
m and 7t represents Sg,moi.uuw nth column of the matrix and i B
*+ represent the complex conjugate. e oo g
8 is Kronecker delta which means 8;=0ifi#jand ;=1 if; =j :

Each element is normalized and orthogonal to the other o&mﬂma in the matrix. The
character of the ith representation of operation R, is just the sum of the diagona] elements -
of the matrix representing R (or trace of the matrix). The equation
simpler equations. s e

(1) can e put in three
L. Ifi#j,8;=0and m=m andn=n’, then : 7

o R R0 o T By R)=0 e

—_—

e

3 of irreducible representations.

r
el

s T e characte

h
!

|| e
i IT; Q.NVS: _1..4 Q.SS: b
o = 3
e v is h/l, h is the order which is 4 in the Coy point g
: .of any such vector is /i, y
square of the Jength

) and liisione dimensional length. For example, again choosing both R's as Cyy veg
6) and liis: i =
a.wz,o nu Ix1+1x1+(EDX (DD x(-1)=4

m.u&uuau.ava 4 w I v ible representation :
. .AA .u.v and {4) can be used to QOGOEﬁOMG any ﬂmﬂﬂ. cib ] :
: d ble r ggméﬂ The reducble repr esentation can be written as linear combips

w «of Great Orthogonality Theorem (GOT). . .
_Bvomwm.“w“ uﬂﬂa._mmm can .vw derived from GOT for irreducible representatiost
3 - o (s oRiqle ;mmx
E.o:uuu. Nitmber:of IR’ in a group is equal-to the number c\.. classes of oﬂsﬁmuﬂ—“:n ".
2. Suin «of the squares of the uimensions of gm.:ﬂm is equal to the o ]
- group.

ﬂmlf_.u +nglg +ngly

o

o 8t SV

N o L]
2B=+2+08+.:=h :
i ; e el

=) . 3 mension ¢
! where the sumrmation is taken overzll the representations T;. Since _r”wwwm of the e
is equal to'the charucter of its identity operation E, so the sum of the B.
of E of IR's of :gFoup is equal to the

. order of group.
m.. " . 3. Thesum of the sq
" 7 ~Phus-each Tow is.

v E(B)P=h
i e
: der ot
uares of the characters of an IR is equal to et
normelizedtoh, the order of the group.

R T A=k

“The characters
the:-column

-

<
TRe: cach 0!

of the IR’s of the same group are o:rom%mwwﬁoa

s:of the IR’s in the character table form ‘orthogo

- L@y )=0

- t -

1l
ot

o of*

2R ugate elem™
racters of the elements of the same class (comuge™® = .
; ...nﬁanh.ﬁm‘.ﬂvm.mmmﬁnﬁoﬁ wre same.’ i3

S— "

- . P % -
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Derivation for Reducible Representation.

In general any reducible : e -
5 3 % representat . .
e e p on ' can be written as linear ‘combin iy

C=n,I, +ngly+ngly+ ..

where I'y, T's... are IR’s and n’s are the nu i 0
; ! mber of t; p ARV
in Table 6 (T=T3 +Ty+ T3+ T';) we note that imes each IR occurs. From Cy,, Point

: XR)=Zn; %; (R)
,NQS is the character of reducible representation which corr
it by %; (R) and summing over R, we have
- w@. ®x® = m Z n; %{(R) %(R) :
except for i =j, all terms on RHS are zero. Thus, 5 n
WN\EVNANVHJ\\NS‘E" e

h WN\QNV X(R) and n;=Za, x{R) 2@ .(11)

when ez = no. of elements in the class. This corresponds to the reduction formula (or ¢y
: . I - e

magic formula). :
CONSTRUCTION OF CHARACTER TABLE FROM GOT RULES
Orwnmn:m. table contains all the basic information that the group Fno@ €an provide.
1. Construction of Character Table for C,, Point Group. =
Classes of operations in Cj, group are three, that is, E, 2C; 30,
(a) Since there are three cldsses of operations, there should be three IR’s, viz.
: Ty, Ty Ty
(b) .H.Hrm oﬁ.mm« of the group is 6 (1+ 2+ 3), therefore,” the sum of the squares of the
&.Ba:&obm (character of the identity operations) should be equal to 6. Since
dimension has to ‘be an integer, I;=1,/,=1andl3=2 (12 + 1% + 22=6) s0 there
should be two1-dimensional and one 2-dimensional representations. The irreducible
representations of identity operations E, are 'y =1,Tp=1and '3 = 2.
(c) For any point group, there should "be one IR which is symmetrical to all the

ovo._.wzo:m. The character corresponding to all the operations is +1. Thus, IR, I is
written as 2
=¥ E 2C; 30
151535 1B T e L
The sum of the squares of the characters of the operations should be 6.
, Vo e 1K D 1% B BT T =
since there is 1E, 2C; and 30, operations. © o g
(d) For other IR’s we know'that the character of IR’s are orthogonal to each other. The
character of E for I'; is 1. Hence, the character of the C3 (%¢_) and the character
of o, Qo.v should be such that - .

Hxsxxm+wx~xv.ﬁu+mxwxxu =0

v -

When xc, =1, ther 5 =~ 1. ‘Thus, T, is.represented as A
G T " B 2Cy .30y 00 3

ST T e s e e b e e Rl o

3 Flla""@ b
esponds to Rth operation. Multiply

| obtain 4 422+ 267200 -

The character of Ty should be «arthogonal to I’y and T'y. The character of EinTyis

3ot the character of C3 be Xc, and. that of G, %0, is Iz then by sl
i n pogonality of T'y and T, we get

wxuxw+mxHx&ou.+wx~an.no ..{12)
By considering the orthogonality of Tpand I3,
: Ix1x2+2x1xxXc,+3%1-1)xXo =0 .-{13)
Substracting equation (13) from (12), we have - -
6, =0, hence X' =0 Table 7. Character table for
e S T Cav POl s
-wswwmnno mcwm..unuwnmum for x5, = .|§.Nﬁnu ow. . o = o |
umpxuwux:&nﬂuxwxonw. : o T 1 b T g
S 2 o ! ‘-N.nuu..lu. Ty ! 1 1 -1
. . . & 2 3, [ B g P 0
 Hence the character$ of Tgare - 2 -=1.0 77 - T 0
4 construction of Character Table for Cy Point Group. - eI R ¥
The symmetry operations are, E,Ca6:; 05 Emﬁu.hﬁﬁz 4 operations. e

(a) So 4 IR’s are possible : T, T, Tzand Ty - :

(b) Sum of the squares of the dimensions of tne IR’s should be 4 (order) hence each
should be one dimensional 12312+ 12412=4. 3

(c) The dimension of the representation is equal to the character E. Thé irredutible
representation of E must be equal to 1 for all. ok e : Vo

(d) Sum of the sqnares of the characters of IR’s and orthogonal to I'y. The nvPcuSD’

H must indude two +1 and two — 1. : t

i 3. Construction of character table for Dy point group. “The symmetry a_an_.:”

MS D5 point group are categorised into four classes . -

iiz. E,2Cg, 2C%,5C, Hence, there are. four

Table 8. Derivation of character

freducible representations, two of which are singly \able for Ds group.
legenerate and the other two are doubly degenerate. Dy | E | 2Cs | 3C3 | &
{he order of the group is 10. Initially the character ™ 1 1 1 1
b ble can be written s shown in Table 8. T 3 3 3 x
Apply the following equation 2 =
3 —nu 2 a b <
: .wmuh‘eﬂaxb.@.ﬁxvou.v.@ Ty 2 a I R

~ [Where g is the number of elements jn a symmetry'class p, h is the order of the point
group and R, is a symmetry operation in the pthclass), toget - @
: (1)242a+2b+5c=0 % vaw%lo
which gives 10c = 0 or ¢ =0, Similarly, .
(i) 2+ 2d + 2 + 5f=0 © (iv) 2 + 2d + 2¢ - 8f=0
. Jeading to 10f=0 or f=0. i § § ¥
‘Equations () and (1) on addition give 4 + 4o +4d =0 or a + b = -1. Using equation(§) we

RO O |V . -
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SPECT vﬂﬁ—mv‘aawnﬂ
3 n E ed with identi
That is, 20 + 262 =10 - 4 =6 or a® + b2 =3. Mﬁ. &Bosmwoa& IR (not to be confus ity E) ang f
Since (@ +b)=-1. (@ +b)?=1, that is, 2ibl+2ab=1 _ ste nwvwommﬂwa”ﬂﬂ%mn triply degenerate representations. _
. o ; 'S . 3 i i S
Since a2 + b3 =3, we get 3+ 2ab =1, that is,ab=-1. W e TorF Eo.ﬂ.mm_m o5 wnhn wb rotation about subsidiary axes of plane is designated by ; “
Again (@-by=(a+ b)? - 4ab = s=oyI .n—u:. d .Mmmvn bsidi
: =1+4=5 givinga-b=16 subscript .:E re used for symmetrical with respect to subsiiary axes org, Plane
Since a+b=-1, taking a—b=+5, we get - i ?.wu.ﬁ..ﬁ.—.s. v. bsidi ”
¢ T 7 ,m. » - (nd change .of s1gn)- dfor U umwﬂ:ao:mn& with respect to subsi iary axes or o, plane |
a= 2 and b= — m Ag, WNa.m.w»‘.R.Nﬂl.w..b e o ul ﬁuu—.—o is denoted b -
: 5 S = 3 157 = - r molecular Y prime
e ? S - V5 3 T % (change ¢ =5 1 to TO—JNOD..N— v—mﬂm o w
We have a=2cos 72 or 2 cos 0 and ; 3 : : ALBLE, T are used for character +1for o, P - : ”,
b=2cos 144 or 2 cos 20, where 8=72° V2 A B, B, T are usod for character = 1 Tor oy, plane. 5
Similarly, it can be shown that d=2cos20 and e=2cosb. T : e : s G_. and D., have their own notations. Greek lettery
The character table for the Ds group can be. completed by substituting the valués fori. ° The two fmfinite Mu.ommum ﬂM..N -0:1 3 ere | is the component of o;ﬁ
- a,b ... f and represented in Table 9. — e =, 1,84~ «correspon S Cebl g o _ The equivalent symbols iz
Isomorphic groups have (hat: ‘samp “Tablé-9. Character table for Dy |5 angular ‘momentum _wvocn the molecular axis n.mMM used s 2
character table (also the same order and same F— -~—=peint group. z&#&mﬁ&u&ou are Ay, mm.m@ Mm....qﬂmw“&ocw.a&? respect to a plane whit
forms of their multiplication tables) and thus Ds | E | 2Cs | 263 | 5G, + For 1Xs T, T indicate thé symmetry o€ 3
simplifies the construction of character tables. T 1 1 1 ins the molecular axis. — . W
: : : : 1 contalns ey . bscri ungerade) &
Following point groups are isomorphic. Cy, =D, _.~ : 7 - b+ The IR’s-of Doy aT® distinguished by adding st ptg (gerade) or u (ongeicd {
Cp~S, (n even), Cp,~Ca, (n.0dd), Doyg~ D4 25 L. asual 1o specify the symmetry-with respect to ipversion centre.
D, ~Dyq (n 0dd), O ~Ty. Hence, the point groups |- I3 2 | 2cos8 {2¢cos28| O » If thereiis 0o centre of symmetry, g or v aré not, used. |
C3,and D3 have the same character table, T, 2 |2c0s28) 2cos8 | 0 Zonety : C.. point group considering. Teble 7. *
although their symmetry operations are different. fxercise. Indicate Mulliken’s notations for C3, P 1 to Ca axis (principal axis) 2t
Solution. 17 : One dimensional (xg=1) symmetrica 3

CHARACTER OF IRREDUCIBLE REPRESENTATION

* The irreducible representations follow a pattern of symmetry behaviour, so these are
referred to as symmetry species. However, in the application of group theory: to molecular
_spectra, irreducible representations are not used directly but their characters are used. Also
the labelling of IR’s as T} is not very informative. The symbols formulated by R.S. E:Erw-mw

are usually employed to distinguish the IR’s of the point group.

-Table 10: m.m:nm._d format of a character table.-

Schoenflies symbol of group Symbol for each class in group and Symmetry properties

number of elements in the class :
Character of IR's of ‘each class

Translations; |

Transla Product funciisn
|Rotations _

R.S, Mulliken .&‘ivo_ for
2 of coordinates ..

i each IR 3

'NOTATIONS FOR IRREDUCIBLE REPRESENTATIONS - . _
Mulliken's symbols denote the dimension of an IR as follows : A or B are Jabelled for |

one dimensional IR’s according to whether the character of a proper or improper rotalion *
by 2n /n about the symmetry -axis of highest order n is +1 or -1 respectively.
s+ A is labelled for symmetric W.r.t. principal Cy axis or S, axis for some D,y
: ....maocvm.iwmi:.mwmé..:..ﬁ.. S ot g ;
‘A is also used for symmetric wi.rt. all:three Cg aies for-Dy-grotip and
where no C, s R ks e L 3 By

~ 9% WK

€.

for Cy;

2
v
'
)
.

. HACEISO . X ol i 2 h ] . - .

the vertical plane,’

snce it 3s A .
To: One dimensional (xg = 1), Sym
-rical with respect to

Tyt ‘Two-dimensional (% = 2), hence

Solution.

and Sy ;

Ty «d@mensional (g = 1), symmetr
- itisA,

.Hu.,u 1-dimensional (xz=1) symmetrical to
-T), thus it is Ag.

0y, plane (g,
.._uu._“

6., planc (g, = 1). So it is By.

Ty 1-dimensional (g = 1), unsymmetrical to Co

o ‘Therefore it is.Bj.

5¢ wrt. principal Ca

.Qc vertical plane (%o,

Exercise. ‘Stute ‘Mulliken’s symbols for Coy point

J-dimensiona), (X = 1), unsymmetrical to Cz (Xc,

14

axis or S, axis for Dz and § poigy

|

metrical to Cj axis (prineipal axis) unsymoe

—-1). Hence it is Ay
it is E.
group using Table 6.

jcal to princifal axis Cy and 10 0z plare. §

principal axis Co and c,amva,iwﬁ

pmetrical |

=- :. but m.z

and also t0 Ox plant (o,
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mﬁ onsional representations, s.a character (4] SWWQ.SQQ. () in groy i Characler tables for the cubic group.
e ¢ of a symmetry operation is unchz 'S same a5 ¢, P E 8C. 3
%mang : nw.md To.the'es .L..Wm& U% a simjlar t € m 1 3 QN g& @Ql
aﬁ»s_osm belonging me symmetry class have the 1ty transfory, 1 1 1 1 Olgy + Oy * Oe
polecular point groups are extremely important for pe; >ame character, 1 1 1 = O
oblems related to m_o_mnamﬂ spectroscopy. Charact T applications ip 2 A ) . = =
? gymmetry properties of orbitals. (ii) Hucke] ‘er tables find theqy . 3 Lo - f='% o
%& ¥ ons. (1v) Infrared and Raman active <#n:mﬁ. molecular orbta) Eoww ! : ° -1 1 | -1 |R.R.R}
Character tables for some of »m:woﬂm. (v) Structyre elu . (B 3 0 = -1 1 | T,T,.T) (3 pe Oys O
; 2 mportant ; : : :
ﬂaﬂv\_ e Ao - 0, (x2)- ./.vo_a groups: E |8C3|3C3{6C,{6C;| i |8S5|30, |65,|60q
] 1 Y : O, (2) 14 2 a|-2f-14 2a§-1% 1| 1} 3} . Cpp# Gy #+ Oy
Ay 1. 1 B x| af=af-a] 1} 2 1f-1)-1
=Tl :
A et S 0 e 2(-1] 2| o] of 2{-1| 2] of 0 (Cps * Oy = 20 B~ O
: 1- e
.m, : 2 ) 1 (e ] 3| of-1] 11-14 3| of-1| 1|-1|RR R
B S TR .|.,L. S| ) 3| o{-1]-1] 1] 3y o}-1f-1] 1 {Qrye OB
I ———— : 1 RN S R A
=, group E= 2C; T 50, . 1] 1] 1[=1]-1{—1}-1]-1} 1} 1
A 1 1 ] - heven) 2{-1] 2| o| o]-3} 1{-2} o] o} - " - -
i ; - : T, s Tu=Fy| 3] 0f-1] 1]-1{-3] o] 1]-1] 1|T.T,T)
- : - -1 SR T2 |B|Tu= Fp| 3| 0]-1]-2} 1]-3] 0f 1} 1|-1 |
1 cosa | 2cos 20 -~ 0 T = S
m 5 To ). Re Ry) (% 1) ~ APPLICATIONS.OF GROUP THEORY ‘
2 2cos2a | 2cosa 0 el ¢ * 5
= (@g-ay, odﬂl + Group theory is an extremely useful tool to predict the probability of gé
Cy;, group - E C - s atomic and molecular spectroscopy. .
4 n ' on T s » 1t helps in the classification of the normal vibrations according to the irreduti
¢ 1 it 1 TR - representations of the point group of molecules.
=5 R, Orye Oy Oy * 1t aids in qualitatively finding out the infrared and Raman spectral activity of
1 215 PRI RS W _. fundamental as well as the overtone and combinations bands.
1 = 1 T 3t t * Group theory can be applied in the construction of hybrid orbitals and
i [ \ adapted linear combinations of atomic orbitals in MOT. Group theory helpsin
=) 1 T.T, - determining optical activity and polarity of molecules, classification of elemen
C - particles into fermions and bosons and simplifying the secular equatfon which is
20) | Co(x) : o(xy) | oxz) | o(yz) a special feature of the quantum mechanical calculations iz beth VBT aad MOT. It
1 1 thus saves computational Jabour angd cost of calculations on digital computer.
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1 4 _. : 1 1 % r =4 1 1. List the fundamental symmetry opérations. oV B g
y L Ans. (i) Identity operation (ii) Rotation operation (iii) Reflection aperation (iv) Centre
=l 1 Lo mligdnasil 1] R Oy of inversion operation (v) Rotation-reflection operation.
1 1 =1 = 1 -1 : 2. How many times I'j occurs in point group U for Cy, point group?
; — Ans. Transformation vectors in Cp, point group are .
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Using reduction equation (11) h = 4. ag=h of elements in:class= 1 a_.._au

1 _
nj=5 Lag % (R) X (R) i '

Sa..v..w.ﬁxn...wxl.u.:xo,;xeuo

Tt Y5~ Put itrans-dichloroethylene i

. 745

n an appropriate coordinate system and find the symmelry

ispecies to which each of the rotations Ry, Ry, R, and each of the translations Ty, Ty, T,

delong? C=C bond ns Y axis and Z axis perpendicular to the molecular plane,
Ty T, Ty transform as By, By, Au o0d Ry, Ry, R, transform a8 By, By, Ag respectively.

$34. Deétermine the direct product of. the following for the point group Dy (a) A%y xA’y

na (M) = ¢ (1X241K=24 (- X0+ (- 1) x0} =0 - <ty
1 3 i 5
:u:..uvnMEx.»i:5x?§+~xo+?5x8nu

R Eﬁvum:xmiuci:si-cxo:x&.uu. 55
Hence '=T3+ T, ; S e
8. Wirther 1,0,-1 form a .group
(b) multiplication. ¢
Axs. The elements do not form'a
and (b) there is no inverse for 0.
= 4. Why a set-of numbers cannot
Ans. Because the associative
not equal to (A/B)/C.
5. Prove that each element of a group
multiplication table.
Ans. ~If any‘two entries in the same row
follow-P = R. :

6. «SESQ.. the point groups Cy,; and U.m are isomorphic?
Ans. Since the order and structure of the multiplication
D, are same, they are isomorphic. .
7. Mention the subgroups of (a) S; and
>n.uu. (a) E, Sy, Cy g \. A“uv m. UN.&.«W».UM&M. Cou, C2, C;..
8. NQ‘“\M M.\Mmﬂt.mwn:o: nQEciasan of @ o,(1) C30,(1)72 () Aﬁwv:uaqﬁv Cj (c) C3Sj of the point
Ans. (a) C3 (b) 0,(1) since (C3 ' =C; 7
9. State the generators of point groups (a) S3 (b) Cyy and (c) Dy,
Ans. (a) Sy (b) Cy, 0, () C3,Cy L Cy, 03
10. NWW} group w.wevmmﬁ.‘%& by n&.&:w or deleting the QSSQQVU operations indicated below?
S e e st S D
Ans. (a) Dy (b) D3y . (c) Sg
— 0D, ®C - () C. :
11. Find the irreducible representations present in the following reducible representations :
T E 4C; 4C% 3C%
‘T:9 0 0 1

the rule of combination being .«& addition

group. (a)1+1=2, iEn.r is not a member of the E.S,S

form a group by Sm process cw division? :
law of combination is not obeyed. For Qw&v_abxa C) is

appears only once in each row and column of a group

(or column) say OP and OR w..m.Bcw_. it wonld

table for the groups QNe and

o) 0,(3)

L@ . . @Dy

Ans. A+ E +2F.

12. List the .wgcmzhﬁ.mw. notations for the uon.:.‘ groups of (a) Staggered and eclipsed-form of
ferrocene (b) Be(acdc), (c) Trans-NiCly, 2 pyridine (d) Mo(SzCoHy)s dithiolens comples.
Ans: (a) Dyg: Dy * () Dyg— =~ +* = (0} Dy, @rDg et

S )
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ot Y

f : x & x E”.

ﬁwﬂﬁ% 3 @A™ + A7 4B (© >M. Mw.n ok routesand indicalé th

’ istithed elements present in the following molecules and indicate the

o Wﬂ%ﬁ”ﬂuﬂ“w@lﬂﬁﬂhnnwiania E%:wu. (a) S4N4 (b) Cyclopropane (c) Boatund thair
tform of cyclohexane. —
EM.. Rb.a .QN. NON Pﬁﬁa O45
{{c)Boat form = Ca, 0 Cavr

16. .For.an woctahedral molecule XYg,
((a) XYeZ (b) XY 4Zs {c) XY3Z3. State the

3 ‘bélongs?

g Zms. (@) Q&G :

17. Assignithe symmetry group and rotatio

Dy b (b) Cj, 3C2, 05 Dy,

chair form Cg, 3C3 L C3, 043 Dad.

certain Y atoms are replaced by different Z atoms in
point group to which the resulting molecule

_ (b) Trans Dy, CisCg, - (9 fac Cy,mer Co,.
n group to biphenyl (a) with phenyl rings coplanar
{(b)with rings in perpendicular planes (c) with rings in planes E.%:ﬁ.nup...l.l: e
Avs. {(a) Doy ) Doy (¢) D,. Rotation group is Dy,
18. - Kind the &_.Emum_.ouhﬂ.\:ww for the group :.:.:.\ order 48 and &n.mm 10. :

1 ‘Ams. 4,2 and 4 one-, two- and three- dimensional representations respectively.
‘Derive the symmetry species for the vibrational states of H,0 for (111) and (012).
Ans.{111): A; x Ay XBy =B, . :

- AOHNVu.bHX.WanwNHbP—
-8 20. THow a study of IR and Raman spectra co

‘trans planar structures for NoFg? 2 ; .
Amns. For cis isomer, the vibrations (3A] +Ag + 2By) are all Raman and IR active excep

Ay which is IR inactive. For the trans isomer aw>k+ >=+mm=v.ormwn=m.: ISR S——
‘wggwdmhwnhse.ﬁ

¥ 19.

uld be used to differentiate between cis an(

_ MULTIPLE CHOICE QUESTIONS.

1. TEwodold axes of rotation are absentin .
{a) HC] : (b) HCN (¢) Both (a) and (b) (d) HF

'9. “Both vertical mirrer planes (30,) and horizontal plane of symmetry exist in

(@) BFg - (b)- NH; (c) HoO _ (d) B(OH)3

“The greup of 24 5vonmso.=|m is designated by. the point-group O: The rotation w.ﬁues.
h: -opérations of an cctahedron are S : :
; Q)E (b) 8C3, 6C4 (c) 8Cy 6Co (@AN
@ 4. 'Cubic point groups are 2 : X
¥ ((3)10,:0h i (b) T, Tq, Th () 1, I) (d) All
: 5. Thestaggered form of dibenzene chromium belongs to group
.~ () Dsq - ) Dea i e) D SR (@) D3g ~

' '6,.. Theiorder of the graups Csg, Dyo and Sqo

. ! are respectively
(a) 40,80,40, - (b) 40,10,40 {c)_80, 40,40 -

22 S RS y r . 0y . 4 '

L (d) 40,40,80

— .




7. Which of the following molecules are optically active?

(a) Co(en);” = (b) CHF BrCl (¢) (CeHs)e (d) ATl _
[Hint. A molecule with a S, axis is optically inactive). &
8. Which of the following molecule has no dipole moment? S
(a) COq (b) Cglig (c) Both (a) and (b) (d) NHj >
9. For which of the following groups are the C, and chsl operations in the same claggd
(a) Cpp (b) C,, and D, (c) C, d) Dy
10. The irreducible representations contained in the following reducible representations . .
. C; E Cy 2 : T
I' 8 22,22 are —
(a) 4A + 2E (b) 24 + 4E (c) 6A+6E - d) 24 +2E :
11. Schoenflies notations for the point groups of B,Cly, NO3 and 1, 3-dichleroallene are
respectively i
(a) UQ\_. UN&. QN :uv Un&. b&: On (c) OM. le. U&_ ?mv NVDS- ON. NVNR i
12. The character table for Sg can be constructed as a product of groups - °
(a) C3x Cy . (b) Cox Cy (c) C3xC; . (d) C; xC;
13. The rotation group in 1, 3, 5-trinitrobenzene with all NO; groups coplanar is
(a) Dy (b) Dy (¢) C3 (DG !
14. The dimensions of irreducible representations for the group with order 32 and class
11 are SR .

(a) 4 and 2 one dimensional representation .

(b) 4 and 7, the 1-D and 2-D representations respectively
(c) 2 and 2, the 1D representation :
(d) 3 and 4 with 2D representation . . : =

15. The irreducible representations -to. which. the translational and rotational .<a2.8.
. components transform in Cy;, are

(@) A} +E (L)A"+E,A"+E”  (c) Ag+E,A +E (d)As+E" -

16. The order of improper axis in SiCly, Ni(CO)4 and allene are S
(a) 3,4, 4 (b)-4, 4, 4 =1(c):2.3: 4 (d)4,3,2

17. H3BOj belongs to point group
(a) C, (b) Cqy (e) Cay; * (d) Dy

18. Axial point groups are : SRVIAE T
(a) 0:.. Q:c. Q:? .m.: (b) b:. Ua? b:& (c) O. Oh : (d) ﬂa. N..&

19. Mulliken’s notations for infinite groups like Cay and Dy, are = e

. "(a) Z, n, D. d... 1 Adv.bu.. E,, E,, Nu (c) E, Oy : T nﬂgﬁ.“n,

wodero”m_.:.iww"ub ._.nv..mmoa.b.mo:...ou».&:&g.mqumwn.:almumwnvoﬁga symmetry,
operation by +1 corresponds to trivial homomorphism. It is knewn as ..

(a) Totally symmetric representation (b) Irreducible representation
(c) Isomorphic representation (d) All :
; - ANSWERS
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-



