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1. Learning Outcomes 

After studying this module, you shall be able to  

 Know the vector addition of the two independent angular momenta 

 Learn the possibility of the two possible representations, called uncoupled and coupled 
representations 

 Learn how these representations are related to each other through unitary representations 

 Know what the Clebsch-Gordon coefficients are 

 Learn the rules for the allowed values, j, of the total angular momentum obtained by the 
coupling of two angular momenta with values  and the possible values that the 

magnetic quantum number m can have in terms of  

2. Introduction 
            In this module, we study the coupling of two independent angular momentum operators which 

commute with each other. In the preceding module, we learnt that if  are the two angular 

momentum operators, then there exist the eigenstates 2211 mjandmj  which are respectively 

the simultaneous eigenstates of zJJandzJJ 2
ˆ,2

2
ˆ

1
ˆ,2

1
ˆ .  Here we shall learn that there are two 

possible representations in which the eigen states of the individual angular momentum operators can 

be coupled. One is the obvious uncoupled representation which is obtained by just taking the direct 

product of the two eigenstates. These states are obviously the simultaneous eigenstates of 

zJJzJJ 2
ˆ,2

2
ˆ,1

ˆ,2
1
ˆ . The second more useful representation is obtained when the two angular 

momentum operators,  , are vectorially added to get the total angular momentum,  and we 

look for the representation in which the coupled state is the simultaneous eigenstate of 

2
2
ˆ2

1
ˆ,ˆ,2ˆ JandJzJJ . We shall show that these representations are related by the unitary 

transformation and the coefficients in terms of which the uncoupled states are related to the coupled 

states are called the Clebsch-Gordon coefficients. The present module and the one following it are 

devoted towards studying the important properties of these coefficients.  

 

3. Angular Momentum Algebra 

 

3.1Addition of Angular Momenta 
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        Let there be two independent angular momentum operators,  , which commute with 
each other, i.e., 

                                           [                                                                    (14.1) 

 
 

These angular momenta may refer to different particles or two independent systems, or may be the 

orbital angular momentum,   and   may be the spin, , of the same particle. Let 1,1 mj  be a 

normalized simultaneous eigen state of zJandJ 1
ˆ2

1
ˆ , so that 

                             

)2.14(111111
ˆ

)2.14(11)11(1
2

11
2
1
ˆ

bmjmmjzJ

and

amjjjmjJ









 

Similarly, let 22mj  be a normalized simultaneous eigen state of zJandJ 2
ˆ2

2
ˆ : 

               

)3.14(222222
ˆ

)3.14(22)12(2
2

22
2
2
ˆ

bmjmmjzJ

and

amjjjmjJ









 

A normalized simultaneous eigen state of zJandzJJJ 2
ˆ

1
ˆ,2

2
ˆ,2

1
ˆ  with eigen values 

 21),12(2
2),11(1

2 mandmjjjj   respectively is obtained by taking the direct product of the 

states 2211 mjandmj  ,i.e., 

                                      22112121 mjmjmmjj                            (14.4)   

However, in many physical situations of physical interest, we deal with systems whose Hamiltonian,  

is invariant under rotations and therefore commutes with the total angular momentum operator  

which is obtained by the addition of two angular momentum operators,  . In such cases, we 

look for the eigen states of  which are simultaneous eigen states of . Now the total angular 

momentum operator  of the system is the vector sum of the two commuting angular momenta , 

,i.e., 

                                  2
ˆ

1
ˆˆ JJJ


  .                                                                       (14.5) 

Consider the operator 2Ĵ , which is  
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zJzJyJyJxJxJJJ

JJJJJJJ

2
ˆ

1
ˆ22

ˆ
1
ˆ22

ˆ
1
ˆ22

2
ˆ2

1
ˆ

2
ˆ.1

ˆ22
2
ˆ2

1
ˆ2)2

ˆ
1
ˆ(2ˆ







                                           (14.6) 

Since all the components of , commute with all those of ,  and also ]2
ˆ,2

2
ˆ[]1

ˆ,2
1
ˆ[ JJJJ


  =0, it 

follows that 2Ĵ commutes with 
2
2
ˆ2

1
ˆ JandJ . However, because zJ1

ˆ  does not commute with 

yJorxJ 1
ˆ

1
ˆ , we find 2Ĵ  does not commute with zJ1

ˆ ; for the same reason 2Ĵ  does not commute 

with zJ2
ˆ . As a result, the simultaneous eigenstates of  2Ĵ and zĴ are the eigenstates of 

2
2
ˆ2

1
ˆ JandJ  but not (in general) of zJandzJ 2

ˆ
1
ˆ .  

3.2  The Clebsch-Gordon Coefficients 
Thus there are two distict descriptions of the system,: (i) in terms of the eigenstates of 

zJandzJJJ 2
ˆ

1
ˆ,2

2
ˆ,2

1
ˆ , as stated above, and (ii) in terms of the eigenstates of 

zJandJJJ ˆ2ˆ,2
2
ˆ,2

1
ˆ . Let us denote the basis vectors in the case (ii) by 

)(21 jmbysometimesormjjj . We then have 

                     

)7.14(2121
ˆ

)7.14(21)1(2
21

2ˆ

)7.14(21)12(2
2

21
2
2
ˆ

)7.14(21)11(1
2

21
2
1
ˆ

djmjjmjmjjzJ

cjmjjjjjmjjJ

bjmjjjjjmjjJ

ajmjjjjjmjjJ

















 

This representation is called the coupled representation. Since the two representations, 

mjjj 21 and 2121 mmjj are simply different orthonormal bases in the same Hilbert space, they 

are related by a unitary transformation, i.e., 

         

21

2211212121
mm

mjmjjmmmjjjmjmjj                                 (14.8) 

      As there are (2  different values of   and  for a given value of 2m , there are (2  

different values of 2m , the dimensionality of the represezntation is  

 

)122()112(  jj . The summation in Eq.(14.8) must be performed over , since 

 are assumed to have fixed values. The coefficients jmmmjj 2121 , which depend on the 

six angular momentum quantum numbers, are called Clebsch-Gordon or vector addition coefficients. 
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Various symbols and names are used for it. We shall adopt the symbol 
jjj
mmm

C 21

21

and call it the 

Clebsch-Gordon or C-cofficients. In the abbreviated form, we write Eq.(14.8) as 

                             22211

21

21

21

mj

mm

mj
jjj
mmm

Cjm                                          (14.9) 

The Eq.(14.9) is to be regarded as the defining equation for the C-coefficients. 

3.3   Selection Rules for allowed values of j and m 
           In order to find out the allowed values of j for given values of  we proceed as follows:  

Using the relation, zJzJzJ 2
ˆ

1
ˆˆ   and operating on the state mj , we find 
















21

21

21

21

21

21

21

21

21

21

21

21

02121)21(.,.

2121
)21(

2121)2
ˆ

1
ˆ(

2121

)2
ˆ

1
ˆ(ˆ

mm

mmjj
jjj
mmm

Cmmmei

mm

mmjj
jjj
mmm

C
mm

mm

mmjjzJzJ
jjj
mmm

C

mm

mmjj
jjj

mm
Cm

jmzJzJjmzJ





(14.10) 

Since the state vectors 2121 mmjj  are linearly indepe1ndent, this implies that 

                

21,0.,.

210

21

21

21

21

mmmif
jjj
mmm

Cei

mmmif
jjj
mmm

C





                                                      (14.11) 

 
 
 

Since the maximum allowed values of 21 mandm  are respectively given by 21 jandj , from the 

relation 21 mmm  , it follows that the maximum possible value of m is  21 jj  . Now, because m 

can only take on 2j+1 values, from –j, -j+1,………,j-1,j  , it means that the maximum possible value of j 

is  21 jj  . For the case j= 21 jj   and m= 21 jj  , there will only be one term in the summation on 

the right of Eq.(14.9), viz., corresponding to 11 jm  and 22 jm  , we have 

                   221121,21
2121

2121

jjjj
jjjj
jjjj

Cjjjj



                                           (14.12) 

Using the orthonormality of the states involved, we have 

        
2

121,2121,21
2121

2121

jjjj
jjjj

Cjjjjjjjj



                                        (14.13) 
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According to Eq.(14.13), 

                      )exp(2121

2121

i
jjjj

jjjj
C 




, 

where   is real. We choose the phase of the state 21,21 jjjj  in Eq.(14.12) such that   is zero. 

Thus 

                        12121

2121





jjjj
jjjj

C                                                                                      (14.14) 

With this choice, we fix the phases of all the C-coefficients belonging to j= . 

      Let us now consider a state for which j= , but m= . In this case we have two 

possible values for  : we can either have 12211  jmandjm  or 

22111 jmandjm  . Thus the state jm  must be a linear combination of the two linearly 

independent eigenstates; 2211112211 jjjjandjjjj  . Note there are two such linear 

combinations, one of them belongs to the set of egenstates wih  j= 21 jj   while the other orthogonal 

combination is a member of a set of eigenstates for which the maximum value of m is 121  jj ; this 

latter set must be such that 121  jjj . Proceeding further in this way to the state  j= , but 

m= , we shall see there exist three linearly ind--ependent states corresponding to the 

values 221121,21  jjjandjjjjjj , respectively. Each time m is reduced by unity 

by proceeding this way, one of the coupled states  
 
which arises belongs to a j-value reduced by unity and in this state m has its maximum value. The 

lower limit minj is reached when the number of coupled state has matched with all the uncoupled 

states. We know 

                      )122()112()12(
max

min

 jj

j

j

j                                                       (14.15) 

We can determine the minimum value of j by noting that 21max jjj   and the left hand side of 

Eq.(14.15) can be evaluated by using 

                    )]1()1max(max[
2

1max

 



jj

j

j                                          (14.16) 

Using this relation in Eq.(14.15), we find 

                                    2)21(2
min

jjj  . 

        Since  ,0min j  

                                       21min jjj                                                              (14.17) 
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We thus arrive at an important result that in the addition of two angular momenta, 2
ˆ

1
ˆˆ JJJ


 , if the 

eigen values of 
2
1

Ĵ  are )11(1 jj  and the eigen values of 
2
2

Ĵ  are )12(2 jj , then the eigen values 

of 2Ĵ are j(j+1) , where 

                   21......,121,21 jjjjjjj                                         (14.18) 

The three angular momentum quantum numbers jandjj 2,1  satisfy the triangular condition 

                                2121 jjjjj                                                            (14.19) 

And for each value of j there are 2j+1 values of m, given by 
               m = - j , -j+1 , -j+2,    .   .   .    . j – 2, j – 1, j                                            (14.20) 
 
 

3.3.1   Example 
         Let us consider an example to illustrate the allowed values of  j and m for the case :  

222/31  jandj . Note that for given 2/31 j ,  can take the values -3/2, -1/2, 1/2 and 

3/2 and for 22 j ,  can have the values -2,-1,0,1 and 2. 

          j                                         m                                                                    

2/7  2/7  2/3           2 

         7/2,   5/2 
          

           5/2           3/2  

          ½ 

         1 
         2 

      7/2, 5/2, 3/2           3/2           3/2 
          1/2 
         -1/2 

        0 
        1 
        2 

     7/2, 5/2, 3/2, 1/2           1/2          3/2 
         1/2 
         -1/2 
        -3/2 

       -1 
        0 
        1 
        2 

 

     7/2, 5/2, 3/2, 1/2             -1/2         -3/2 
        -1/2 
         1/2 
         3/2 

         1 
          0 
          -1 
          -2 

    7/2, 5/2, 3/2             -3/2          -3/2 
         -1/2 
           1/2 

          0 
          -1 
         -2 

      7/2, 5/2            -5/2           -3/2 
           -1/2 

          -1 
          -2 

        7/2            -7/2            -3/2            -2 
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     It should be checked from the above table that in the uncoupled representation, total number of 

states is 2054)122()112(  jj , which matches with the number of states in the coupled 

representation, viz., 






2/7

2/1

20)12(
21

21

jj

jj

j . 

4.  Summary 
    After studying this module, you would be able to 

 Know the vector addition of the two independent angular momenta 

 Learn the possibility of the two possible representations, called uncoupled and coupled 
representations 

 Learn how these representations are related to each other through unitary representations 

 Know what the Clebsch-Gordon coefficients are 

 Learn the rules for the allowed values, j, of the total angular momentum obtained by the 
coupling of two angular momenta with values  and the possible values that the 

magnetic quantum number m can have in terms of  

 

 
 
 


