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1. Learning Outcomes 

After studying this module, you shall be able to  

 Learn how to derive the matrix representation for the components, 
2ˆˆ,ˆ,ˆ JandzJyJxJ  of 

angular momentum J 

 Know the representations of the eigen states as column vectors on which the angular 
momentum operators for each value of j can operate 

 Learn the Pauli spin matrices and their important properties 

 Know how to obtain the expressions for the eigen functions in terms of Spherical harmonics for 
the orbital angular momentum of a particle  

 Learn the operation of Parity on Spherical harmonics 

2. Introduction 
        The present module is in continuation of the preceding one, wherein starting from the 
commutation relations of angular momentum operators, we deduced the expressions for the eigen 

values of the diagonal operators zJandJ ˆ2ˆ  in the common basis represented by the  state mj , 

where j and m labelling respectively the eigen values of    and of   . In this module, we shall obtain 

the matrix representation for the components, 
2ˆˆ,ˆ,ˆ JandzJyJxJ  of the angular momentum 

operator  . Considering a few specific values of the angular momentum, such as  j=0, ½, and 1, we 
shall write their matrix representations explicitly. It is remarkable to note that the eigen value spectrum 
includes not only the integral but also the half-integral values of j. As we already know half integral 
values of j describe the intrinsic spin of the particle, such as an electron or a proton. We describe the 
spin matrices for the spin ½ particles, first introduced by Pauli and briefly mention their important 
properties. Finally, we illustrate how to obtain the expressions for the eigen functions in terms of the 
spherical harmonics for the orbital angular momentum of a particle. 

3.   Angula Momentum  (continued) 
3.1 Matrix Representation of the Angular Momentum operator J in the  jm  Basis 

           The state vectors jm , for m= - j  to  +j constitute the complete orthonormal basis for a (2j+1) 

– dimensional subspaces, providing the angular momentum representation in which any function of 

the angular momentum components will be represented by a matrix having elements jmAmj ˆ  . 

The rows of the matrix will be labeled by various values of  and the columns by j and m. As 

we learnt from the preceding module, the basis states are the eigen states of  the matrices 
of these operators must be diagonal. In fact, just using the Eqs.(12.20a) and (12.40) from the previous 
module, we can write 
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)1.13(ˆ

)1.13(2)1(2ˆ

bmmjjmjmzJmj

ammjjjjjmJmj












 

As far the operators , taking the scalar product of mj  with Eqs.(12.32) and (12.33), we 

write the matrix elements as 

                            

)2.13(1,
ˆ

)2.13(1,
ˆ

bmmjjjmcjmJmj

ammjjjmcjmJmj














 

The values of the constants  can be determined by equating the norms of the two 

sides in each of the Eqs.(12.32) and (12.33). Thus from Eq.(12.32) we get 

                                    1ˆ  jmjmcjmJ   

 Note that the bra conjugate to  JmjismjJ ˆ,,ˆ , since . The left hand side of Eq.(13.2a) 

can be evaluated by using Eq.(12.28), i.e., 

             
2]2)1([ˆ2ˆ2ˆˆˆ  mmjjjmzJzJJjmjmJJjm        (13.3) 

We now equate the right hand sides of Eqs.(13.2a) and (13.3) to get 

                       
2/1)]1()[(  mjmjjmc                                                            (13.4) 

In the same way, we can evaluate 

jmc , using Eq.(13.2b). Here, since from Eq.(12.29) 

jmzJzJJjmJJ ˆ2ˆ2ˆˆˆ  , we shall find  

                      
2/1)]1()[(  mjmjjmc                                                            (13.5) 

The matrix elements of are thus determined completely. Using the relations, Eq.(12.24), 

one can then express 
                           
 

                       )ˆˆ(
2

1ˆ)ˆˆ(
2

1ˆ
 JJiyJandJJxJ .                     (13.6) 

     Let us now recapitulate the important results that we have arrived at: 

      

)1.13(ˆ

)1.13(2)1(2ˆ

bmmjjmjmzJmj

ammjjjjjmJmj












 

)7.13(1,
2/1)]1()[(ˆ

)7.13(1,
2/1)]1)([(ˆ

bmmjjmjmjjmJmj

ammjjmjmjjmJmj












 

From the above equations, the matrix elements for   are written as 
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}1,
2/1)]1()[(1,

2/1)]1(){[(
2

1ˆ

}1,
2/1)]1()[(1,

2/1)]1)({[(
2

1ˆ





mmmjmjmmmjmjjj
i

jmyJmj

mmmjmjmmmjmjjjjmxJmj









                                                                                                                                      (13.8a, 13.8b) 
From the above results, it is clear that the matrices representing the angular momentum operators 

2ˆ,ˆ,ˆ,ˆ,ˆ,ˆ JandJJzJyJxJ  are all diagonal in j in the basis jm . Thus, for a given value of j ( j=0,  

1/2 , 1,3/2 ,2……..) we have an infinite number of representations for these matrices, having 2j+1 
columns and rows labeled respectively by the values of m and m′. One can either consider all these 
representations together to form a single representation of infinite rank , or consider each of these 
representations of 2j+1 dimensions separately. 
 Here, for illustration, we just write the first three finite dimensional representations for j=0, 1/2 , 1  for 

the operators 
2ˆˆ,ˆ,ˆ JandzJyJxJ .   In writing the explicit matrices the convention is followed of 

placing the element for m′=j in the first row, m′=j-1 in the second row etc., and m=j in the first column, 
m=j-1 in the second column and so on,. 
       For the case,  j = 0,  for which m=0, we have simply 

    )0(2ˆ),0(ˆ),0(ˆ),0(ˆ  JzJyJxJ ,                 (13.6) 

where ( 0 ) is the null matrix of unit rank. 
 
For   j= 1/ 2,  we have 

                       

2/1,2/1)ˆ(12/1,2/1)ˆ(

2/1,2/1)ˆ(02/1,2/1)ˆ(





mmxJmmxJ

mmxJmmxJ
, 

Similarly, the elements for the operators 
2ˆˆ,ˆ JandzJyJ can also be written. In matrix forms, we 

have: 

            





























 











10

01

4

23
,2/12ˆ,2/1,

10

01

2
,2/1ˆ,2/1

,
0

0

2
,2/1ˆ,2/1,

01

10

2
,2/1ˆ,2/1





mJmmzJm

i

i
myJmmxJm

   (13.7) 

    For  j=1, we have the possible values of m and  m′=+1,0,-1. As a result we have 3×3 matrices. 
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













































































100

010

001
22,12ˆ,1,

100

000

001

,1ˆ,1

00

0

00

2
,1ˆ,1,

010

101

010

2
,1ˆ,1





mJmmzJm

i

ii

i

myJmmxJm

  (13.8) 

        As to the question regarding the state vectors on which the above matrix representations of the 

components of angular momentum  J
̂

 are to operate, we know that the representation of an arbitrary 

state   with respect to the jm basis would be a column vector whose elements are given by 

jm . The dimensionality of the column vector would depend on the values that m can take for a 

given j. For example, for j=1/2, m can take two values, +1/2 and -1/2 ; it has two elements labeled by 
m=+1/2 and m=-1/2. The eigen vectors are given by : 

2/1,2/12/1,2/1  mjandmj  . 

In matrix notation, the eigen vectors are 

                   


















2

1
,

2

1









 and                                               (13.9) 

 
 

Since these constitute an ortho-normal set and are also the eigen vectors of the operator zĴ , the 

simplest representation satisfying these conditions would be 

                 


















1

0
,

0

1
 and                                                       (13.10) 

In a similar way, for j=1, m can take the values +1, 0, -1, we would have three independent elements. 
The eigen vectors are given by: 

1;10;11;1  mjmjmj       (13.11) 

There will be, in general, three column vectors each of three elements. The simplest representation 
constituting an orthonormal set of eigen vectors are: 

    





















































1

0

0

,

0

1

0

,

0

0

1

                                                 (13.12) 

3.2  Pauli Spin Matrices 
          You all know that electrons, neutrons and protons, the building blocks of atomic and nuclear 
physics have intrinsic spin ½. The non-relativistic theory of spin ½ particles was first developed by W. 
Pauli in 1927. Denoting the spin vector by  which is written as 

                                           


2
s                                                                               (13.13) 
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where the vector  has the components , called Pauli spin matrices, are defined as 

               








01

10
 ;        







 

0

0

i

i
 ;         









10

01
          (13.14) 

Compare these matrices with those given for j=1/2 in Eq.(13.7). Following properties of the Pauli spin 
matrices can be easily verified: 
                      

)15.13,15.13(1)(det,0)(

)15.13(,

)15.13(,2},{

)15.13(,2],[

edkandkTr

ckijkiijji

bijji

akijkiji

















 

        Note that while writing the above relations, we have replaced the x, y, z components of  by  
1,2,3 respectively, denoted by, the indices i, j, or k, each taking the values 1,2,3. 
     The two basic spin=1/2 eigen states α and β , given by (13.10) correspond to the spin up 
(  states respectively. They satisfy the ortho-normality relations: 

             )16.13(),16.13(0;1 ba   

3.3     Orbital Angular Momentum 
         It should be emphasized that the commutation relations we have employed are independent of 
whether J is orbital angular momentum or spin angular momentum or is a sum of both; or whether it is 
the angular momentum of a single particle or of a system of many particles. If the angular momentum 
J represents the orbital angular momentum, generally denoted by L, there exists a coordinate 

representation for the eigen functions. The eigen states are then represented by ml  , so that 

                                   

)17.13(ˆ

)17.13()1(22ˆ

blmmlmzL

and

almllmL









 

 Following the discussion from the preceding module , the coordinate space wave function for a single 

particle of position vector  (  may be denoted by ml . In terms of spherical polar co-

ordinates, the components, zLandyLxL ˆˆ,ˆ  are represented by 

)18.13(,ˆ

)18.13(,sincotcosˆ

)18.13(,coscotsinˆ

cizL

biyL

aixL































































 

and 
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.
2

2

2sin

1
sin

sin

12

2ˆ2ˆ2ˆ2ˆ












































zLyLxLL

     (13.19) 

You must have already studied that the expression on the right hand side of Eq.(13.19) represents 
second order differential equation satisfied by 

           { 
2

2

2sin

1
sin

sin

1




 


















} ),()1(),(  lmYlllmY        (13.20) 

The eigen functions, ),( lmY , common to the operators zLandL ˆ2ˆ  (see Eq.(13.17a) and (13.17b)) 

and normalized to unity on the unit sphere are the spherical harmonics, satisfying the orthonormality 
relations 

                mmlldlmY
ml

Y 
  ),(),(                                                        (13.21) 

The standard expression for the spherical harmonics for non-negative values of m are given by 

              )22.13()exp()(cos

2/1

)!(4

)!()12(
)1(),( 


 imm

l
P

ml

mllm
lmY 












  

 
Recall that the quantum number l can only take the integral values l=0,1,2,…… and also for a fixed 
value of l, the allowed values of m are m=- l, - l+1,..  ..  , l-1, l  . For negative values of m, we use the 
relation 

                          

),(,)1(

),(
,

)1(),(,










mlYm

ml
Ym

mlY
                                (13.23) 

3.3.1 Parity Operation on Spherical harmonics: 

       The behavior of the spherical harmonics under parity operation, i.e.,  or in terms of 

spherical coordinates, r is of special interest. If represents the 

parity operator, then under parity operation 

                                   ),(,),(ˆ   mlYlmYP  

Now 

          

)(cos)1(

)cos()}{cos(

)exp()1()exp()exp()](exp[







m
l

Pml

m
l

Pm
l

Pand

immimimim







 

Using these relations, one finds that 

                          ),(,)1(),(ˆ  mlYllmYP                                                      (13.24) 
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It is thus clear that spherical harmonics, ),( lmY , have even parity for even l and odd for odd values 

of l. You will find this property to be quite useful in your further studies involving spherical harmonics.  

4.  Summary 
              In  this module, you have learnt to 

 Derive the matrix representation for the components, 
2ˆˆ,ˆ,ˆ JandzJyJxJ  of angular 

momentum J 

 Know the representations of the eigen states as column vectors on which the angular 
momentum operators for each value of j can operate 

 

 Know the Pauli spin matrices and their important properties 

 Know how to obtain the expressions for the eigen functions in terms of Spherical harmonics for 
the orbital angular momentum of a particle  

 Know the operation of Parity on Spherical harmonics 

 
 

 
 
 

 


