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1. Learning Outcomes 
After studying this module, you shall be able to 

 Define orbital angular momentum operator and learn the commutation relations between its 
components 

 Identify angular momentum as  a generator of infinitesimal rotations in three-dimensional 
space 

 Learn that the origin of commutation relations lies in the geometric properties of rotations and 
know the need to generalize the definition of angular momentum 

 show that the commutation relations determine the quantal properties of the angular 
momentum, i.e., the eigenvalues and eigenvectors of the angular momentum operator 

 learn the significance of ladder operators or what are called raising and lowering operators 

2. Introduction 
     The study of angular momentum assumes greater importance in quantum mechanics than even in 

classical mechanics. There could be many reasons for this. In the first place, you know from the study 

of Stern-Gerlach experiment that angular momentum is quantized; second is the observation for the 

existence of intrinsic spin (angular momentum) of elementary particles like electrons, protons etc., 

third is the importance of periodic motions, envisaged as motion in closed orbits involving angular 

momentum. A thorough understanding of angular momentum is, therefore, essential in atomic, 

molecular and nuclear spectroscopy. Even in scattering and collision problems, considerations of 

angular momentum play important role. Angular momentum concepts have led to natural 

generalizations, as for instance, isospin in nuclear physics and SU(3) symmetries in particle physics. 

 

3.   Angular Momentum 

3.1 Definition of Angular Momentum 
        As studied in classical mechanics, the angular momentum of a particle about a point O, shown in 
Fig. (23.1), is defined as 

                                                                                                     (23.1) 
where is the position vector and  is the linear momentum of the particle. 
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  Fig. 23.1 
The quantum mechanical operator for the angular momentum is obtained by replacing the dynamical 
variables and by the corresponding operators. Thus 

                                       , 

                                                                                                   (23.2) 

                                       

Alternatively, we can also write, using the notation, x  y  

                                        

where a repeated index is to be summed. Here , 
                                      

   and                                           (23.3) 

                                 . 

By using the commutation relations: 
                                               [  = [ ,   ,                     (23.4) 

It is a simple exercise to show that 
                                                 [                                                          (23.5)   

Also,                                   [                                               (23.6)  

                    where                                                                              (23.7) 

 
This shows that while the components of angular momentum operators do not commute with each 

other, the square of the total angular momentum operator,  ,  on the other hand, commutes with 
each component. 

3.1.1  Angular Momentum as the Generator of Infinitesimal Rotations 
      To get physical insight into the nature of the orbital angular momentum, let us analyze its 
connection with rotations in space.  
       Consider the case of a change of representation induced by a rotation of coordinate system, from 
S (OXYZ) to (O   obtained  by rotating the axes through an angle  about OZ. As a result, a 

point whose coordinates in S are  will have coordinates  in given by 
                                      

                                                                                                       (23.8) 

                                          
The wave function describing the rotated state at  must be equal to the original wave function  

at the point  , i.e., 
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                                                                                                                 (23.9) 

On substituting for  from Eq.(23.8) and assuming  to be infinitesimally small, we write 
 . It is, however, more convenient if we replace x by x-  and y by 

y+x on both sides of the equation. We thus have 
                                                                              (23.10) 

Using the Taylor’s series expansion for  on the left hand side and retaining only the first term in the 

expansion, we get 

                                                 (23.11) 

We note that the differential operator appearing in Eq.(23.11) can just be identified as the z-

component of the angular momentum, , i.e., 

                                                                                                (23.12) 

It thus enables us to write Eq.(23.11) as 
 
 

                                                                         (23.13) 

It is, therefore, said that  plays the role of the generator of infinitesimal rotations. In general, if the 

rotation is about an arbitrary axis along the unit vector , Eq.(23.13) is then written as 

                                                                                            (23.14) 

For a rotation through a finite angle , we sum up the series, instead of retaining only the first term , 
and get 

                                                                                         (23.15) 

The important point to note from this study  is that the origin of the commutation relations, Eqs.(23.5) 
and (23.6), lies in the geometric properties of rotations in three dimensional space and that these 

relations are very general, including those of  as a special case. We therefore adopt a 

more general point of view and define an angular momentum  , with three components,  

, satisfying the commutation relations  

     [    ,          [     ,         [                          (23.16) 

We also introduce the operator 

                                                                                                      (23.17) 

It is a simple exercise to show that   commutes with each of the components,  ,  i.e., 

                  [ ] = 0                                                                 (23.18) 

3.2   Eigen Values and Eigen Vectors        

          We shall now show that the commutation relations, Eq.(23.16), determine the quantal properties 
of the angular momentum, i.e., the eigenvalues and eigenvectors of the angular momentum operator 
are determined completely by Eq.(23.16) and the general properties of the Hilbert space. Since the 
components of the angular momentum do not commute among themselves, one can not find a 

common basis for all the three components. However, because  commutes with   , we can have a 

common basis for  and any one component, say , of  . Also note that the eigen values of  and 
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, are real, since they are Hermitian operators. It is, therefore possible to find a complete set of 

simultaneous eigen states of    and any one  
 

component of  ,  which we choose to be  . Let us represent such a common basis by the state 

mj , where j labels the eigen values of    and m those of    . The state vectors  mj  are 

orthonormal, i.e., 

                       mmjjmjmj                                                                       (23.19) 

By definition, 

                          
)20.23(ˆ

)20.23(ˆ 22

bjmmjmJ

ajmjmJ

z

j







 
 

Note that , being the sum of the square of Hermitian operators, is positive definite. Therefore, 

                         0
2

2ˆ




jmJjm
j .                                                                        (23.21) 

It is also clear that 

                 
2ˆ2ˆ2ˆ2ˆ2ˆ2ˆ
zJzJyJxJJjmJjm  ,                               (23.22) 

     i.e.,         
222ˆ2ˆ2  myJxJj   

Since yJandxJ ˆˆ are Hermitian, 
2ˆ2ˆ
yJandxJ  are positive operators and therefore their expectation 

values are necessarily positive. It follows that 

                         02  mj                                                                                            (23.23) 

3.2.1   Ladder Operators: 
            At this stage it is convenient to introduce the operators 
                                                          (23.24) 

The commutation relations, (23.16), can readily be expressed in terms of  as 

                                                                  [                                              (23.25a) 

                                                                   

                                                                [                                            (23.25b) 

                                           (23.25 c) 

Note that    are not Hermitian operators; instead 

                             =                                                        (23.26) 

The square of the angular momentum operator can now be expressed in the following forms: 
                                                                                                      (23.27a) 

                                       =                                                                  (23.27b) 

                                      =                                                                   (23.27c) 

This can be easily seen if we remember that 
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                                                                          =                                      (23.28) 

 Similarly, one can find  
                                                                                                    (23.29) 

Using these relations, it is simple to express Eq.(23.27a) in the forms given in Eqs.(23.27b) and 
(23.27c). 

        Since  commute with , jmJ
ˆ  are eigen vectors of having the same eigen  value 

as that of jm , i.e., 

                       )ˆ(2)ˆ(2ˆ jmJjjmJJ                                                                (23.30) 

But operating on jmJ
ˆ can be worked out , using the commutation relations,Eqs.(23.25a) and 

(23.25b) to give 

                      )ˆ()1()ˆˆˆ()ˆ(ˆ jmJmjmJzJJjmJzJ                        (23.31) 

 
 

This shows jmJ
ˆ is an eigen vector of zĴ belonging to the eigen value (m+1)  , whereas jmJ

ˆ  

is an eigen vector of zĴ with eigen value (m-1)  . On comparing with Eqs.(23.20a)  

and (23.20b), we conclude that  jmJ
ˆ  gives a state 1, mj  apart from a possible normalization 

constant, while jmJ
ˆ  is proportional to 1, mj . We thus write 

                              1ˆ  jmjmcjmJ                                                                    (23.32) 

                               1ˆ  jmjmcjmJ    ,                                                               (23.33) 

where 

jmcandjmc  are the normalization constants to be determined. 

From Eqs.(23.32) and (23.33), it is important to notice that while the effect of the operator                                                                              

 on the state mj,  is to increase the eigen value of zĴ  by one unit, i.e., it raises the state to 

1, mj  , the operator  acting on the state    mj,  lowers the state to 1, mj , resulting in 

reducing the eigen value of  zĴ  by one unit. It is for this reason that the operators   are 

respectively known as raising and lowering operators or termed as ladder operators.             

    The  repeated operation of the operator   on Eq.(23.32) shows that the given state  mj,  would 

go on increasing the index m to m+1, m+2, m+3 ….., similarly the operation   would be lowering it to 
m-1, m-2, m-3,…… But clearly, the series must terminate, otherwise we would have vectors like  

mj ,  which violate the inequality, Eq.(23.23), since is not changed by the application of   on 

mj, . This means in order to terminate the series, there must exist a maximum value, say   for 

which 02
ˆ  jmJ . Similarly, there must be a minimum value, say  for which 01

ˆ  jmJ . 
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Since the states 12 jmandjm  are obtained from jm  by repeated application of 

 JandJ ˆˆ   respectively, we must have a condition 

                                     12 mm a positive integer  or zero                                            (23.34) 

Now the state vector 02
ˆ  jmJ  implies that its norm is zero, that is 

 
 

                        

02
ˆˆ

2

0)2
ˆ()2

ˆ(








jmJJjmor

jmJjmJ
                                                                  (23.35) 

Using the Eq.(23.28), i.e.,   in Eq.(23.35)  , and using Eqs.(  

23.20a) and (23.20b), we get 

                              )12(2  mmj                                                                                (23.36)           

Similarly, the equation     01
ˆ  jmJ   gives 

                         )11(1  mmj                                                                                      (23.37) 

Equating Eqs.(23.36) and (23.37), we have 

                                
0)112()12(

)11(1)12(2





mmmmor

mmmm
                                           (23.38) 

This shows that either 12112 mmormm  . Out of the two, first one is ruled out because 

of the condition (23.34) and therefore only the second, according to which the minimum value is the 
negative of the maximum, is an acceptable solution. 

         Now, j , being the eigen value of , depends only on j (cf., Eq.(23.20a)) so that from 

Eqs.(23.36) or (23.37), one concludes that 12 mandm should be functions only of j. The choice 

toleadingjmmandjm  212 the requirement 

                           jmm 212 a positive integer or zero 

meets these conditions. As 12 mm  can be zero or a positive integer, j can have the values 

                         j =  0, .                                           (23.39a) 

According to Eq.(23.36), the eigen value j  is given by  

                               )1(  jjj                                                                                   (23.40) 

and m can take the values : m=  -  j   to   +  j , differing by integer, since m can change by integer only, 
i.e 
 
                        m=  - j,  -j+1 , -j+2, …..       , +j - 2,  + j - 1 , + j                                      (23.39b) 

We  have thus obtained the eigen value spectrum of angular momentum operator ,  just starting from 
the commutation relations between the components of angular momentum and the basic postulates of 

quantum mechanics,. The remarkable point to note is that half integral values of j have emerged from 

this general treatment in a natural way.  As we  know, half integral values of j are possible only when 
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spin is involved. For a given value of j, there are (2j+1) linearly independent state vectors 
corresponding to the (2j+1) different values of m given by (23.39b). They are the common eigen 

vectors of . 

4.  Summary 
           In  this module, you have learnt to 

 Define orbital angular momentum operator and write the commutation relations between its 
components 

 Identify angular momentum as  a generator of infinitesimal rotations in three-dimensional 
space 

 Know  that the origin of commutation relations lies in the geometric properties of rotations and  
the need to generalize the definition of angular momentum 

 show that the commutation relations determine the quantal properties of the angular 
momentum, i.e., the eigenvalues and eigenvectors of the angular momentum operator 

 know the significance of ladder operators or what are also called raising and lowering 
operators. 

 

 
 
 


