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 Learning Outcomes  

 After studying this module, you shall be able to  … 

• Learn the state of a physical system in terms of the state vector in Hilbert space 

• Know how a Hermitian operator acting on a state vector gives us the information of a 

physically observable quantity in terms of various eigenvalues 

• Learn the definition of expectation values of the corresponding operator in the state 

• Know the properties of quantum mechanical operators and of canonically conjugate 

operators 

• Know tha time evolution of a quantum mechanica state vector 

• Learn some important properties of representations, basis of ket and bra state vectors 

and unitary matrices           



 

4 
 

 

Physics 

 Quantum Mechanics-1 

 Postulates of Quantum Mechanics and Representations of  Vectors, bases and 

Unitary Operators    
 
 

 

1. Introduction 

Having developed the properties of vectors and operators in Hilbert space ---an underlying 

mathematical  framework of quantum mechanics, we now present the basic postulates, using  Dirac 

notation, in a form appropriate to the Hilbert –space formalism of quantum mechanics. The next 

section is devoted to studying the mathematical properties of representations of the ket and bra vectors 

and operators and unitary transformations from one basis to another.                   

2.Postulates of Quantum Mechanics 

    2.1    State Vectors and Observables of a Physical System               

Postulate I  : 

 Each state of a physical system is represented by a vector ket, say, 
a

, referred to as a state vector in 

a Hilbert space. The vector 
a

 or any scalar multiple of it corresponds to the same physical state. For 

convenience, it is required that 
a

 be normalized so that the vector representing the state is 

determined upto a constant factor. 

To the above postulate is added the principle of linear superposition, according to which if 

21 aanda
 represent the possible state vectors then  a linear combination, 

                                    21 aaa  
                                                             (8.1) 

is also a possible state vector, where α and β are arbitrary complex numbers. Conversely, any state may 

be considered as a linear superposition of two or more states. In fact, we assume that there exists an 

orthonormal complete set of state vectors for any state space. 

You may recall that in classical mechanics, the dynamical state of a system is specified by dynamical 

variables such as coordinates and momenta of the particles in the system at a given instant. From this 

information, not only  the value of any other dynamical variable such as energy can be obtained but 

even the state of the system at any other time can be deduced by means of the equations of motion. In 

quantum mechanics, however, the definition of the state of the system is significantly different from 

that of the classical case. Here to get information on the dynamical variables of the system, we 

introduce the following postulate. 

 

 

Postulate II :   
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For every dynamical observable  A  (like energy, momentum etc.) of the system, there exists a 

Hermitian operator Â in the Hilbert space. As stated above, any state vector can be expressed in terms 

of a complete set of basis vectors. These basis vectors are the eigen vectors of the Hermitian operator. 

The only measurable values of a physical observable  are the various eigenvalues of the corresponding 

operator. Thus, each of the eigen values ( assumed, for the time being, to be discrete) of the operator 

has associated with it a vector, represented by ka
, in the Hilbert space. Let it be an eigen vector of 

operator Â  so that 

                                         kakakaA ˆ
                                                                 (8.2) 

 The hermitian character of the operator ensures that the eigenvalues are real. Eigen vectors 

corresponding to different eigen values are orthogonal 

                                 i.e.,  
jiforjaia  ,0

                                       (8.3a) 

and also normalized, i.e.,      
.1kaka
                                                                   (8.3b) 

 

2.2    Measurement Postulates :  Expectation Values and Probabilities 

Postulate  III :     

If we measure the variable A in the state of the system specified by the eigen-vector ka
 of the 

operator Â , we shall have the precise measurement in terms of the eigen value,  . 

If the measurement is made on large number of identical systems, each characterized by a state 

represented by a normalized ket 


, then the average value (expectation value) of the operator Â  is 

defined by 

                        
 A

av
A ˆˆ 

                                                                               (8.4) 

In case, 


 is an eigen vector of Â , say, 
 ka

, where 

                                   Â ka
= ka

,                                                                    (8.5) 

Then                
kA ˆ

,                                                                                            (8.6) 
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which is in agreement with the statement given earlier.  If 


 is not an eigenvector of Â , then 


can be expanded in terms of the eigenvectors { ka

} of Â , which form a complete orthonormal 

set of Hermitian operator. We then have                      

                                       

 











lk k
kkakalakaklka

lk
lalaAkakaAthatso

k
kaka

.

)9.8(

.

)8.8(ˆˆ

)7.8(







 

Note that in Eq. 8.8), we have twice made use of the closure relation. We thus express 

the average value of Â   as                      


k

kkaA 
2ˆ

                        (8.10) 

Equation (8.10) is to be interpreted as giving us the result of a large number of measurements under 

identical conditions or, equivalently, the result of a measurement on a large number of identical 

systems, each measurement yielding one or the other eigenvalue of Â . As one cannot, in general, 

predict which eigenstate will be obtained, we postulate that the probability of finding the state ka
      

is    

2
ka

.                                                               (8.11) 

Thus, 
ka

may be regarded as the probability amplitude for the system to be found in ka
. Indeed 

the concept of probability amplitude is based on the premise  that 


, as expressed by Eq.(8.7), 

represents the state of the physical system.  The justification for this premise has its origin in 

experiments on interference and diffraction phenomena discussed in the first module. 

 

 

 

 

2.3    Quantum Mechanical Operators 
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Postulate IV: 

Let there be a dynamical variable, as for instance a Hamiltonian, in classical mechanics, which is a 

function of canonically conjugate variables. The corresponding quantum mechanical operator of the 

system is obtained from the dynamical variable in classical mechanics by replacing the canonically 

conjugate variables by the corresponding quantum mechanical operators. 

            Consider the example of a linear (one-dimensional) harmonic oscillator in classical mechanics, 

where its Hamiltonian ( in Cartesian co-ordinates) is given by 

                       

2

2

1

2

2
),( Kx

m

xp
pxHH 

 ,                                                   (8.12) 

where m is the mass of the oscillator and K is a spring constant. Here the Hamiltonian is a function of 

the position co-ordinate ,x, and the momentum,  , which are the canonical variables. 

According to the postulate, the quantum mechanical operator corresponding to H is obtained as 

                               

2ˆ
2

1

2

2ˆ
)ˆ,ˆ(ˆˆ xK

m

xp
xpxHH 

,                                                      (8.13)    

where  are Hermitian operators corresponding to x a nd respectively. 

It is important to keep in mind that quantum mechanical operators of the conjugate variables need not 

commute; therefore proper order of the variables has to be preserved. 

To make the point clear, let us consider, for example, the orbital angular momentum ;  prL


 , 

where its x-component is given by 

                                           
,, cyclicyzpzypxL 
                                             (8.14) 

So that              
)(22222

)(2

bzzpyypypzzpy

azypyzpyzpzypyzpyzpzypzpyxL





             (8.15) 

 

Classically, both the expressions (a) and (b) of Eq.(8.15) are equivalent. However, when the canonical 

variables are replaced by the operators, the corresponding expressions would not give  
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the same result for  the operator
2ˆ
xL

. The correct expression is obtained by replacing the variables by 

corresponding operators in the equation given by Eq.(8.15a). Only those operators which commute can 

be permuted. 

Another point to note is that a dynamical variable C which is the product two other dynamical 

variables , say, A and B, i.e., C=A B, then the Hermitian operator corresponding to C is not , 

because if  these operators do not commute, i.e., ,  the product  would then be not 

Hermitian. It is a simple exercise to check that a proper combination is given by  , 

which is Hermitian. 

Postulate V: 

Any pair of canonically conjugate operators satisfies the Heisenberg commutation rules: 

                                    
)(ˆ]ˆ,ˆ[

)(;0]ˆ,ˆ[

)(;0]ˆ,ˆ[

cikIikpiq

bjpip

ajqiq







                           (8.15) 

where the operator  represents the generalized coordinate corresponding to  and similarly the 

operator  is the operator corresponding the generalized momentum  canonically conjugate to   . 

Thus, if  represent the Cartesian coordinates, the  are the components of linear momentum. If, on 

the othere hand,   represent the angle,  then are the components of angular momentum and so on. 

In this abstract formalism, the commutation relation, like 

                                               
ixpx ]ˆ,ˆ[

                                                            

between a position variable and its canonically conjugate momentum may be regarded as a 

fundamental postulate and is not to be derived . This quantum condition forms the basis of quantum 

mechanics. 

As another example, consider the case of orbital angular momentum. Thus substitution of the operators 

etc. in place of the corresponding variables appearing in Eq.(8.14), we find that the 

components,  of angular momentum operators satisfy the following commutation 

relations: 

                                            [ (similar relations in cyclic order)          (8.16) 
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We shall see in the subsequent modules how these commutation relations determine the quantal 

properties of the physical variables corresponding to angular momentum operators.  

 

2.4   Time evolution of state vector  

Postulate VI:         

You must be already familiar with time-independent treatment of the Schrodinger equation from the 

elementary course on quantum mechanics. 

Here we postulate that time evolution of the state vector, 
)(t

, is governed by the Schrodinger 

equation: 

                                                 
,)()(ˆ)( ttHt

dt

d
i  

                                      (8.17) 

where  is the Hamiltonian operator associated with the total energy of the system. 

 

3.   Representations, Bases and Unitary Operators 

Having learnt the properties of orthonormality, completeness and projection operator of ket and bra 

vectors, we turn over to learn some general properties of representation.Consider an N-dimensional 

vector space where any vector can be expanded in terms of the orthonormal basis [ Niu ]
. Thus if 

YandX
 are arbitrary vectors, we write 

                                           













N

i

biuiyY

N

i

aiuixX

1

)18.8(

1

)18.8(

 

If there is another vector 
Z

such that 
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)20.8(

1

)19.8(

1

,

)18.8(

















N

i
iyixYXAlso

iyixizthen

N

i
iuizZand

cYXZ





 

Note the relations, Eqs (8.19) and (8.20). These relations suggest that in place of of the abstract vectors 

....,, YX
, we can even deal with their expansion coefficients (or the components). 

[x]   These expansion coefficients are called the 

representatives of the vectors. Corresponding to every relationship between vectors, there exists a 

relationship between representatives. Thus corresponding to Eq.(8.18c) representing a relationship for 

vectors, we have the Eq.(8.19) expressing the relationship which translates as 

                                            [z] = α [x] +β [y]                                                                    (8.21a) 

Or            [                  (8.21b) 

The representatives, unlike the vectors, depend on the basis chosen. However, with respect to given 

basis, the representative [x] corresponding to the vector 
X

 is unique, which is here represented by 

[x] in the representation defined by the basis Niu ][
. 

The basis vectors are represented by  

                                                    , 

 

where                          , 

                                     

                                     .                                                                                      (8.22) 

                                     . 

                                     . 
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From the above equations, it is clear that one could also express the representative [x] of vector 
X

 

in the form of a column matrix as 

                            [x]
























Nx

x

x

..

..

2

1

                                                                             (8.23) 

While the representative of the bra vector 
X

 is represented by the row matrix , i.e., 

                            =                                                       (8.24) 

The scalar product given in Eq.(8.20) is then given by the matrix product,  and the vector addition 

in Eq.(8.18c) is simply obtained by the matrix addition: 

                              z= α x+ β y 

The unit vectors, iu
 are represented by the column vectors; 

     




















































































1

..

..

0.

0

0

....;

0

..

0

0

1

0

22;

0

..

..

0

0

1

11 Nuuuuu

                         (8.24) 

The orthonormality condition and the completeness condition simply reduce to 

                                     
juiu

   ,                                             (8.25a) 

and                       

 
i i

iuiuiu

= I                                                      (8.25b) 

The operator equation 

                                         
YXA ˆ

                                                                 (8.26a) 
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is given by the matrix equation: 

                                               A x= y    .                                                                  (8.27) 

Note that both x and y are (Nx1) matrices, A  is an (NxN) matrix. We thus see that properties of  

the linear operators follow from the properties of the square matrices. This procedure of representing 

vectors and operators by matrices is referred to as matrix representation. Clearly, in this representation, 

a Hermitian operator is represented by a Hermitian matrix. 

According to the definition of a Hermitian operator, we have 

                                
XAYYAX ˆˆ 


  , 

which in matrix form is given as 

                                    , 

i.e.,                             =    , since  is given to be Hermitian, . 

 

3.1  Change of Basis  : 

From the above study it is clear that the matrices representing vectors and operators depend on the 

representation of the basis. The question, therefore is: if we have the same set of vectors and operators 

given in different representations (or basis), how to find the relationship between the matrices 

representing them. In the following,we shall try to find the solution to this question. 

             Let NiuandNiu ][][ 
 be the two orthonormal bases in Hilbert space. Since both the sets 

are complete, the vectors of one set can be expanded in terms of the vectors of the other set: 

                             





N

j

NtoijiSjuiu

1

1,

,                                                   (8.28) 

where the expansion coefficients  can be regarded as the matrix elements of an (NxN) matrix S, 

which transforms the representation Niu ][
to the representation Niu ][ 

. 

Now, taking the scalar product of the Eq.(8.28) by 
ju

, we get 
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iujujiS 

                                                                                    (8.29) 

In other words,  is the component of iu
 along 

ju
. 

Using the orthonormality of the set Niu ][ 
, we have 

                              













N

k
jijiSSkiSkjS

N

k
iukukujujiiuju

1

)(

1





                                                 (8.30) 

where the closure property of the basis Nku ][
has been used.  Similarly, from the completeness 

property of Niu ][ 
, we get: 

jiSS
N

k
ikSjkS

N

k
iukukujujiiuju

)(

1

1















                                                      (8.31) 

From the two Eqs.(8.30) and (8.31), it follows that 

                                                                                                     (8.32) 

Starting from an orthonormal basis, we find that while Eq.(8.30) represents the orthonormality, 

Eq.(8.31) represents the completeness of the transformed basis.Thus we have shown that change of 

orthonormal basis in a linear vector space is represented by a Unitary matrix. 

To write Eq.(8.28) in terms of the matrix representation, we define a matrix U by 

                             (                                                            (8.33) 

where  is the column matrix representing the basis vector given by Eq.(8.24), so that U is an (NxN) 

matrix. From the orthonormality of the basis, we require that 
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I

Nu
N

uu
N

uu
N

u

Nuuuuuu

Nuuuuuu

Nuuu

N
u

u

u

UU 









































































....21

.................

.................

2
.......2212

1
......2111

)......21(

...

....

2

1

    (8.34) 

whereas, from the property of completeness we require that 

                                       ,                                                         (8.35) 

where I is the (NxN) matrix. 

Thus U is unitary, showing that an orthonormal basis can be represented by a Unitary matrix.. 

Now, Eq.(8.28) can be expressed in matrix notation as 

                                                     U′=U S                                                                         (8.36a) 

and since both U and S are unitary, we also have   

                                                                                                                 (8.36b) 

and  

                                                                                                               (8.36c) 

Also note that linear transformation 

                                                    
XAY ˆ

                                                             (8.37) 

in matrix representation is written as                                      

                                                  y=A x                                                                               (8.38) 

in the representation U ; 

and by the equation 

                                                 y′=A′ x                                                                               (8.39) 

in the U′ representation. 
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 Since ′                                                                              

                                                      x=S x′,                                                                         (8.40) 

 we have from Eq.(8.38) 

                                                   S y′= A S x′ 

Or    

                                                   y′=(  S) x′   

On comparing with Eq.(8.39), we get 

                         A′=(                                                                           (8.41) 

Eqs.(8.40) and (8.41) determine respectively the transformation law for the vectors and the 

operators  under change of basis.. 

 

5. Summary 

         After studying this module, you would be able to 

 Learn the state of a physical system in terms of the state vector in Hilbert space 

 Know how a Hermitian operator acting on a state vector gives us the information of a 

physically observable quantity in terms of various eigenvalues 

 Learn the definition of expectation values of the corresponding operator in the state 

 Know the properties of quantum mechanical operators and of canonically conjugate 

operators 

 Know tha time evolution of a quantum mechanica state vector 

 Learn some important properties of representations, basis of ket and bra state vectors 

and unitary matrices 

 

 

 

 


