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1.  Learning Outcomes 

After studying this module, you shall be able to: 

• Know the basic equation of Quantum Mechanics. 

• Learn the two forms of Schrödinger equation. 

• Identify the steps involved in studying a system quantum mechanically. 

• Write Schrödinger equation for a chemical system. 

2. Formulation of Quantum Mechanics 

Classical mechanics failed to correctly explain the experimental behavior of various 

phenomena such as Blackbody Radiation, Photoelectric Effect, Compton Effect, Atomic 

Spectrum, Heat Capacity of Solids and so forth. It was established latter that the above 

mentioned phenomena could be correctly reproduced by considering particle behavior 

(energy quantization 𝐸 = ℎ𝜈) of radiation. Louis De Broglie in 1924 said that nature 

manifests itself in two forms – matter and radiation. And if radiation has dual behavior 

[wave (reflection, refraction, diffraction, etc.) and particle, with energy 𝐸 = ℎ𝜈 

(photoelectric effect, Compton effect, etc.], then by virtue of symmetry, matter should 

also have dual behavior. Broglie suggested that particles have wave-like properties 

characterized by a wavelength (𝜆 = ℎ 𝑝 where 𝑝 = 𝑚𝑣). This idea inspired 

Schrödinger and Heisenberg; and they independently formulated quantum theory in 1925, 

to study the behavior of microscopic matter. 
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At first sight, the two approaches appear different but, later Dirac and Newman showed 

that in essence the two formulations are mathematically equivalent.   

In this paper, we will be discussing the detailed theory and application of Schrödinger 

Quantum Mechanics (since it appears more familiar to chemists than Heisenberg 

formulation). 

3. Schrödinger Quantum Mechanics 

The Schrödinger’s formulation of quantum theory revolves around a partial differential 

equation now popularly known as the Schrödinger equation. Schrödinger formulated non-

relativistic quantum mechanics (where mass is assumed to be constant and does not vary 

with velocity/speed). Whereas, Dirac developed relativistic quantum theory (where mass 

varies with velocity/speed).  
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The Nobel Prize in Physics 1933 was awarded jointly to Erwin Schrödinger and 
Paul Adrien Maurice Dirac. 
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Over here, we will restrict our discussions to Schrödinger’s non-relativistic quantum 

mechanics. The Schrödinger equation describes the behavior of atomic particles by 

means of a function called the wave-function or state function ψ.  

There are two forms of Schrödinger equation, a time-dependent and a time-independent. 

The wave-function is a function of particle’s position and time, ψ(x,y,z,t), in the time-

dependent Schrödinger equation, whereas it a function of position only, ψ(x,y,z), in the 

time-independent Schrödinger equation. 

3.1 Time – dependent Schrödinger equation:  

𝑯𝝍 = 𝒊ħ
𝝏𝝍
𝝏𝒕 ,                𝒘𝒉𝒆𝒓𝒆  ħ =

𝒉
𝟐𝝅 

Here, 𝑯 is the Hamiltonian operator, ψ is the wave-function, and h is the Planck’s 

constant. This form of Schrödinger equation is used for non-conservative systems where 

energy changes with time (mainly used in spectroscopy). This form is not symmetrical in 

the sense that it is doubly differential with respect to position and singly differential with 

respect to time. This affects the continuity of the wave-function. 

3.2 Time – independent Schrödinger equation:  

The time-independent Schrödinger equation is used when dealing with stationary states 

(conservative systems) where energy of the system remains constant with respect to time.  

𝑯𝝍 = 𝑬𝝍 

where 𝑯 is the Hamiltonian operator, 𝜓  is the wave-function and E is the energy of the 

state ψ. 

Over here, we will be studying the time-independent Schrödinger equation which states 

that: 
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When the Hamiltonian Ĥ operator acts on the wave-function 𝜓, the result is proportional 

to the same wave-function 𝜓  (stationary state) and the proportionality constant, E, is the 

energy of the state 𝜓. 

In the time-independent Schrödinger equation, the Hamiltonian operator is equivalent to 

the total energy operator or one can say that it is the quantum mechanical operator of 

energy. It is taken as sum of kinetic energy operator (𝑻) and potential energy operator 

(𝑽).  

𝑯 = 𝑻+ 𝑽 

 

 

 

4.  Operations of quantum mechanics 

To study a microscopic system quantum mechanically using the Schrödinger equation, 

the following four steps are mainly followed: 

 

4.1 Writing Schrödinger equation for the system under consideration 

Schrödinger equation (SE) is the fundamental equation of Quantum Mechanics. This 

equation has no derivation. 

   

Operator is a mathematical command that tells you what to do on what follows. Operator must 
precede the function on which it acts. For every measureable observable/property, there is a 
corresponding operator.  

Hamiltonian does not have any units. It is a mathematical command. It is dimensionless 
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𝑯𝝍 = 𝑬𝝍                                    (𝒄𝒂𝒑)  𝒊𝒔  𝒖𝒔𝒆𝒅  𝒐𝒗𝒆𝒓  𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓 

𝑯 = 𝑯𝒂𝒎𝒊𝒍𝒕𝒐𝒏𝒊𝒂𝒏  𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓   𝒂𝒏  𝒆𝒏𝒆𝒓𝒈𝒚  𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓  

𝝍 = 𝒑𝒔𝒊 = 𝒘𝒂𝒗𝒆− 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏  𝒐𝒓  𝒆𝒊𝒈𝒆𝒏  𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏  𝒐𝒓  𝒔𝒕𝒂𝒕𝒆  𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏  

𝑬 = 𝑻𝒐𝒕𝒂𝒍  𝒆𝒏𝒆𝒓𝒈𝒚  𝒐𝒇  𝒕𝒉𝒆  𝒔𝒚𝒔𝒕𝒆𝒎 

 

No two systems have same Schrödinger equation i.e. Schrödinger equation differs from  

system to system in only 𝑯. 

 

𝑯  is equal to sum of Kinetic energy operator and Potential energy operator.  

𝑯 = 𝑻+ 𝑽   

𝑇 = 𝐾𝑖𝑛𝑒𝑡𝑖𝑐  𝑒𝑛𝑒𝑟𝑔𝑦  𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  (𝑖𝑡  𝑖𝑠  𝑛𝑒𝑣𝑒𝑟  𝑧𝑒𝑟𝑜  𝑓𝑜𝑟  𝑎  𝑠𝑦𝑠𝑡𝑒𝑚) 

𝑉 = 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑒𝑛𝑒𝑟𝑔𝑦  𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  (𝑖𝑡  𝑚𝑎𝑦  𝑜𝑟  𝑚𝑎𝑦  𝑛𝑜𝑡  𝑏𝑒  𝑧𝑒𝑟𝑜  𝑓𝑜𝑟  𝑎  𝑠𝑦𝑠𝑡𝑒𝑚) 

𝑆𝑖𝑛𝑐𝑒                  𝑯𝝍 = 𝑬𝝍                                     

Therefore, (𝑻+ 𝑽)𝝍 = 𝑬𝝍             

 

 

 

 

Kinetic energy of a microscopic particle can never be zero as microscopic particles can never be 
at rest. This is a direct consequence of Heisenberg uncertainty. 

∆𝑥.∆𝑝! ≥
ℎ
4𝜋 

If particle is at rest, then its exact position is known, ⇒ ∆𝑥 = 0  𝑎𝑛𝑑  ∆𝑝! → ∞𝑜𝑟  𝑚∆𝑣 = ∞ i.e., the 
particle has some kinetic energy ⇒ particle cannot be at rest. 
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Schrödinger equation for a single particle of mass m with zero potential energy, 
moving in one dimension (let’s say x direction) 

𝑽 = 𝟎 

𝑯𝝍 = 𝑬𝝍 ⇒ 𝑻𝝍 = 𝑬𝝍 

𝑻 = 𝑻𝒙 =
−𝒉𝟐

𝟖𝝅𝟐𝒎 .
𝒅𝟐

𝒅𝒙𝟐         (𝑲𝒊𝒏𝒆𝒕𝒊𝒄  𝒆𝒏𝒆𝒓𝒈𝒚  𝒊𝒏  𝒙  𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏) 

𝑺𝑬  𝒃𝒆𝒄𝒐𝒎𝒆𝒔                                
−𝒉𝟐

𝟖𝝅𝟐𝒎 .
𝒅𝟐

𝒅𝒙𝟐𝝍 = 𝑬𝝍   

Now, suppose if the particle is moving in xy plane with zero potential energy, then 
the Schrödinger equation becomes 

𝑻 = 𝑻𝒙𝒚 =
−𝒉𝟐

𝟖𝝅𝟐𝒎
𝝏𝟐

𝝏𝒙𝟐 +
𝝏𝟐

𝝏𝒚𝟐  

   
−𝒉𝟐

𝟖𝝅𝟐𝒎
𝝏𝟐

𝝏𝒙𝟐 +
𝝏𝟐

𝝏𝒚𝟐 𝝍 = 𝑬𝝍 

If the particle is moving in space i.e., in three dimensions (x,y,z), then the 
Schrödinger equation becomes 

𝑻 = 𝑻𝒙𝒚𝒛 =
−𝒉𝟐

𝟖𝝅𝟐𝒎
𝝏𝟐

𝝏𝒙𝟐 +
𝝏𝟐

𝝏𝒚𝟐 +
𝝏𝟐

𝝏𝒛𝟐  

𝒘𝒉𝒆𝒓𝒆  
𝝏𝟐

𝝏𝒙𝟐 +
𝝏𝟐

𝝏𝒚𝟐 +
𝝏𝟐

𝝏𝒛𝟐 = 𝛁𝟐 𝒅𝒆𝒍  𝒔𝒒𝒖𝒂𝒓𝒆 = 𝑳𝒂𝒑𝒍𝒂𝒄𝒊𝒂𝒏  𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓 

   
−𝒉𝟐

𝟖𝝅𝟐𝒎𝛁𝟐 𝝍 = 𝑬𝝍      𝒘𝒊𝒕𝒉  𝑽 = 𝟎     

  𝑰𝒇  𝑽 ≠ 𝟎, 𝒕𝒉𝒆𝒏  𝑺𝑬  𝒃𝒆𝒄𝒐𝒎𝒆𝒔
−𝒉𝟐

𝟖𝝅𝟐𝒎𝛁𝟐 + 𝑽 𝝍 = 𝑬𝝍       
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So, for “N” particle system moving in 3 dimensional space, the Schrödinger 
equation becomes 

−𝒉𝟐

𝟖𝝅𝟐
𝛁𝒊𝟐

𝒎𝒊

𝑵

𝒊!𝟏

+ 𝑽 𝝍 = 𝑬𝝍       

Where there are N kinetic energy terms for N particles and one total potential 
energy term for the system under consideration. 

 

Schrödinger equation for a linear harmonic oscillator 

Potential Energy of linear harmonic oscillator is given by:  

𝑽 =
𝟏
𝟐𝒌𝒙

𝟐                              𝑻 =
−𝒉𝟐

𝟖𝝅𝟐𝒎 .
𝒅𝟐

𝒅𝒙𝟐 

𝑺𝑬  𝒃𝒆𝒄𝒐𝒎𝒆𝒔                                 
−𝒉𝟐

𝟖𝝅𝟐𝒎 .
𝒅𝟐

𝒅𝒙𝟐 +
𝟏
𝟐𝒌𝒙

𝟐   𝝍 = 𝑬𝝍 

 

 

4.2 Defining Boundary Conditions for the system 

Boundary conditions means restrictions on the system such as dimensions of the system  

or radius of an atom. 

• Particle in 1-D Box  

  

    x = 0  L        x = L 

In 1-D box, x cannot be less than zero or greater than L 

• Oscillator  
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The amplitude of the oscillator is in between -∞ to +∞ 

 

 

 
 

 

• Electron in an atom  
     (Radius of the atom, r) 
      r = 0 and r = ∞ are two boundaries  

 

 

This step is essential because a well behaved wave-function, 𝜓 must satisfy boundary 

conditions. 

4.3 Solution of Schrödinger equation 

This step is the most difficult and time consuming step in studying a system quantum 

mechanically. 

Once the Schrodinger equation has been written and boundary conditions are known, 

then it is solved to obtain 𝜓 and E. 𝜓 must always satisfy boundary conditions.  

 

 

 

4.4 Extracting information out of ψ 

r = ∞ 

r = 0 

-∞ + ∞ 

x 

Wave-function 𝜓 (also called state function or eigen function) is the store house of 
information.  The entire information of the system is contained in 𝜓. 
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From ψ  the properties which exist for a system can be found out.  The properties of the 

system can be determined using certain rules of Quantum Mechanics: 

 (1) Eigen value equation  (2) Mean value Theorem 

The details will be discussed in subsequent modules. 

 

5. Writing Schrödinger equation for chemical system 

For a given chemical system with “n” nuclei and “e” electrons the total number of terms 

(kinetic energy and potential energy terms) in Hamiltonian can be calculated using the 

formula given below: 

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐻  𝑡𝑒𝑟𝑚𝑠 =
𝑛 + 𝑒 (𝑛 + 𝑒 + 1)

2  

 

(n+e)(n+e+1)/2	
  

Kine+c	
  energy	
  terms	
  

n+e	
  

Poten+al	
  energy	
  terms	
  

Ven	
  (electron-­‐nuclear	
  aBracCon)	
  
ne	
  

Vnn	
  (nuclear-­‐nuclear	
  repulsion)	
  
n(n-­‐1)/2	
  

Vee	
  (electron-­‐electron	
  repulsion)	
  
e(e-­‐1)/2	
  



 

CHEMISTRY 
 

PAPER No. :2, Physical Chemistry – I (Quantum 
Chemistry) 
MODULE No. : 2, Fundamentals of Quantum Mechanics –I 

 

The following table shows the number of terms involved in some of the chemical 
systems: 
 
 

System n e (n+e) (n+e+1)/2 

H 1 1 3 

He+ 1 1 3 

He 1 2 6 

He2 2 4 21 

C 1 6 28 

CH4 5 10 120 

C6H6 12 42 1485 
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6. Summary 

• Rather than saying that a particle has a specified position and momentum, we 

instead describe it by a wave-function, 𝜓 which is a function of all the coordinates 

of the particle and of time.  

𝝍 = 𝝍(𝒙,𝒚, 𝒛, 𝒕) 

• Wave-function 𝜓 (also called state function or eigen function) is the store house 

of information.  The entire information of the system is contained in 𝜓. 

• The Schrödinger’s formulation of quantum theory revolves around a partial 

differential equation now popularly known as the Schrödinger equation. Over 

here, we have considered time-independent Schrödinger equation. 

𝑯𝝍 = 𝑬𝝍     

 

• Hamiltonian operator, 𝑯  is equal to sum of Kinetic energy operator and Potential 

energy operator.  

𝑯 = 𝑻+ 𝑽 

• Operation of quantum mechanics consists of four steps: 

1. Writing Schrodinger equation for the system under consideration 

2. Defining Boundary Conditions for the system 

3. Solution of Schrodinger equation 

4. Extracting information out of 𝜓 

• The number of terms in Hamiltonian for a chemical system with “n” nuclei and 

“e” electrons can be calculated using the formula given below: 

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐻  𝑡𝑒𝑟𝑚𝑠 =
𝑛 + 𝑒 (𝑛 + 𝑒 + 1)

2  

 


