[
T A bemmenneme
U =T R
! N P
s / 12U

- J_DS/YU(HO)’) ’l\,b’\c" -S‘tzem
31 A C‘llﬁ fq/ 7(0 LSS
S (.Uy/rl’/‘fl) ,,7 b/n e
Yy s I')’IC((‘(LIM[/@B 0_7/ Q/a T
\—ﬁmp lengtty ﬁ((orc&,?
| £t T0iel 5055 st

xf\—(? //')'re,(l 4+~)e_go-

————

_____________ = (lhther’) Formal-)

m/pu,/{’/r ewn oée/rj{anc/j Instre e trin

L C ‘_“_@i@_(mooéxﬂ(codes). gte

(pstrections ave not of

4o /{(/P word Sr=e

—

//’)S")LYC(('HW) cre classy Fred st
follocw i n

1- b ‘{{ H’)?/—iuc/;on

R =B Fpstructiom

3"53//—6 INstrece tHom

one-8e insbuchon Excwl,p/{’ ot one - byl<

mshurhoru ane -

Mov A, R : M-ove e conkent St regisa B

~+o -%eZ;H'srLE/‘r A T78H s e opcode 7C(v7>/ MoV A, 5.

Besides 7le opevakion to he pevformed Hee

opcodle alsa spec/fres e vegictens cwlich

contcin operancls (data). 1t opcocle 7SH

can be writen n Hee binany Form ad olllldoo

| Tlee ISE wo bits . /e ol ‘ane foy Moy openraion

| fue nexhE Fhree bids 1] ane Ao b/}ya,fyy cocle

| for _register A cnd Hw lod7 three bt oo

e H binamy cocle for. 7‘6’}/5/*6/) B

ADD B : Add te contenf of 3@6745%@7 & To the

content g7 e accumuledoy, SoH s e apcode
for +le /nstvuchon ADD B. In Hus inshrechiy,

orie d¢ e @Pe/ycu?afz ’s _vegsien B (11s conten)

u)buc}\ /nojx eded n Hee /DS/‘/U(/mn /fse//’, Zn

q‘/tug 7"2’{/139 ot instvuchon ¢ arithmehc growf
J,L mgHum’mn) /7‘ L5 dsSsaum aJ Aol e o/éue/r
oge/mrw/ Ce e adumuladov. Jle opcodle.

Scanned by CamScanner

/’—'—"‘lV_EUHA)»

loaTE: a

i Page No. :
e T ——

et —

| ZBoH

/s /oooooco

’n e bl)’)O/Y\{ "Poymr

Twe fivsh Ave biis je. 10000

Rorye g’/?QC/%____‘_M 7

| oPeyakon +o be /’J?/Y;ﬁoympe/ 1" _ADD opmcuém |
\;71 L :

lagt thyee bits ©00 e e cocle Tuy
W?”S*@'f B for gogyﬂp

—

Tlhe above enca pled cv/’t,(/«/ one A/;h[f /On/g

Al one -byte Inshruckons conday'n 0 For m et

76,74/)’0(1)’2;? O[De/Y‘GU’LdJ >/ N Hae o,DCOCée (/-_5’6/7[’
v)

Two - Byte. (nstruckH'on ¢

In a+wo ~byte lnsfruckon #u [SE byte gl e
Instructton s s epcocle and Fte ond b%_(s

es’they clata o addyess Examplesd ant:

Move oS 4o re

06,05 3 L2 8,05 in .M <_Ofl_?__ ﬁ’”;i_—_
d/zd Q“Oq’ b?d_e L AT f’Lu’ c/a/cz a)(,uc/f)

_MVL B, 08 3 - 40 vegfen B,

___h:gg ved r‘O L Yegrs fffr B. -*
I @4 % /Qc(cf dcda a/ Pong
7N ol mch ‘cocle Form

DB s tle opcode for Hee ’”5””“}“”7 AN end

DB, ol 3
ol s FCee cucel e 85 It a /DOWL N

A H+wo b instvucetor s Stoved n Fo o

consecuklive Mmoo 'Y‘a/« locchtons.

L
S——

|| Thvee Byte

s o,m/c/vess :

‘nebyuction

?//ﬁe Insfruckon H.e 15 F b?///e 0‘%
Instyackion s its wpcode cud e g”a/ cmc/
. ;m’ byfes @ efther (6-bif- dafe ov |6 - b,+

Examples ant :

Jn a thyee

Scanned by CamScanner

DATE: [/ [201
3 Yage No. : J
/ e arpies

S—— —

] LXI H, 2¢400H3 Load H—-L FCUT “”7% 24'0"/’/

91, ©0, 943 LxIM, 2400H in fl< cocle Forrm.

m (st 6%_3 21 s Hee O,Dcocée For f‘éué__,v -

ms’ham‘vcm LxXI H. 71l ond é///\ﬂ OO /s

LS Bs It e ddfa C%LOOH) Dch %5 Aoaded

t'nto WWS/LG/Y L 7l 3ve b};/\a_ oq Js ¥IsBs

ol e Slata ¢2400H), wlich s Loaded into

V\eg{/(5+€/7 H.

LDF} 2s500oH ﬁil" FLe content o7 Mmenwnf

0\
/

(ocatton MboH It el cemudedy,

2p , 00, 2S5 3 LDA 92SVOH /p [t cocle Form.

Tle ISt b;///*e BAH /s 7lee CDPéod/é foy Fle

instruction LDA. 7Ll 2hd b}/~€ OO0 15 8 LSHs

St st aoldvess ot U me/)fwry {0C etl1ov)

Revo . 7L g 7o/ ?f{“e 25 /s ?MS’@S aZ

e addvess o e memory docatror 2soo .

In +Hus instruchon ?"“j_f@’/i s e Co”/“ef)_’l;*ﬁ-

0? otk m ey P{O('C(/RVY) 2500H . Tl C[CLJLCI /5‘ 7(0

be (oaded info tle alCumulatoy. A 3-byl<.

m;/—ya(ﬁm s stoved [y three cor)se(q_/f‘we

memory locattons.

Scanned by CamScanner

},, on T € LJ.J 4 __m::[“_
chh inNshuc TR hew alveady
T has +° <P ot 7

Moded :- ' = ;

fddressi o certarn 2

Wy&dﬁ’e_ uaﬁ

Diyect add~yessin ' —

Re. SMW

LU)Q‘_

Re s)—en’ md’Jrec% acl yedsin I

T ryorn e clr'ate addveﬂ&wl

4‘" e il i
__ > Divect /—99[0"78551 9 ‘ e -
T tHlus mode <t G’G’/O/‘VCS*S"? 0
Sddvels < ?T* operand s given (7 i
 Ins#ruction JFself. Exampled e d_/ i
1y 'sTA 2400H Store pie content T
i ._ accumulatoy in Ul MROPTY ¢ .
2¢00H
22, 00, 24 The above irstrucHon in it code fom

Tr Hds ipshuckHorn ZF4eoH Fs e, MEMOYY

aala’-re.SS wleere Sata 1Iis +o be _5’7'-07601 T+

15 91V€r) n Hee nshuction irsel . Tl 927

cand 379 b;-//-cg ot e ngIucHon

p{a;%/ Hee addrets ot Hee /)/L@/M}’/L/l@(afm

Hepe, /1 /S d//?c/e/ys%ooa/ Heal 2.2

T spunce ol Hee olafa /S @ < e il a fry

TN o2 Read datqg »F?’-Dm Az ‘po//—C__/_

PpB, 02 INShreclrion 10 Fle. cocle form.

Tn Mds ‘nStreecction ©O©2 s Ao aress

e

ol e poit C of an IO Poyl Pom

T woliere M data Ss 7o be vead. /—/eyye,//

fe implied Hial Mo deglrrietion _f;w,{,ésg s

Scanned by CamScanner

¢ camudaloy . Tle ond bite
U Tnsthruction g[)ec/‘ﬁf'd Ml add ress (2
_ pot. L

e —————

| M_“_’___,«b_—_’_‘__________———__,__

> | Regfs}@n' ﬁa’a/ye_S’S/'ni ¢ —
| Y In registery addyessin mode 1%
opevand s (n ome ot mé?Qnma/ cutpose
| yegisters Ir accumledor. Thrl opcode specifier

| @ a_ﬂ/,a/yeJJ‘ 57 e Ye?/f';/efr n addsHem
g0 Tl ope~atan) o be Le/rﬁo*/mé’a’-

; Examples 7€ :- _
L) 1 Mov A ,B pMoye 2 content Jltlf’g/s%enfg B
| +o ’YQZ’_!TS/-QJ’T 2 L

I 19 Tlee sireiction (n Hhe _mole form

i‘ n #‘/LUDS eﬂcamp!i +LL2 op(ool,ﬁ for MoV A B is 78H_—_
| /395;‘&&8 +le open’a/vbr) ~+0 'be pefr%’ovmed e oPCoo(e_ |
T alse specifiet sodrce ond destinafion aegisters Tle
| opcodﬁ 79H can be wWritten (n j)!\ﬂ&’!’:-/ Form 3 ’
T olllicoo. The Lysk Hwo bits -6 ol ane Ffov MoV

—opeain, the_nexd_fhyee bits 1 22 o bineay 9
Loy wesmster A, and 4l last #hree br7sooo

/Me binarf code For register B
—— | Registen Irdirect Addyessing :-
T IN Huts mode d?L aa/c/vessmg Flee ao/a"rf’fj djl t

/mmaﬂJ s Specified /:k,i; a yegishen pay.

exomple ot -

T Laxx H, 2590H load H- L paiy with 2500H
| mov A1 M Move +le content s} He Vnemig_

Loc ation , Whose addvess is in H-L
paly (1-€. 2500H)+40 +lie accumnuda-
.’/"UY i

HLT Halt - i L]

T tle above program +le inshucton MaV A,M

Scanned by CamScanﬁer

&/ .
o earery indirech adldressing..

I ——
ls_an emample_F 7€ "
Hore 11 Ce openand 1s/0 T ——

| Foy Alus 1nshu _/_/"I'OZ’L y o e LA
mt’_mg—v?}-' Tlee aczg/yeg‘g 5; 4 UKR me/nao)/7., ? Nnot- J
(/Il'recf/}/ aol/ﬂh n e) U - Tlee O’o/ yeds
V \

e —

ot Hee memoly* _ ' =
 heus cd>ea beeh 5{360)51@&1_1947 an <47l]
nshuchen in 1 program il T H 200

| , - ‘ ' e i
2y LxI H, 2 stoH load #2 H-L puY Wit ZA*DOH_
ADDM fAcld 7L conten? It Hee memary

dd yeds: /_;' /;/; H-L"

: /O(aﬁm ;CULLUSG’ =3]
pady (1.6 S ooH) Jo Mo conteit 7

e ccunlarory
CHLT ' Eryy N
'S DTfD L 1‘/‘/‘/(fﬂSHU(.)’?d}f) ApD ™~ s ¥

¥ -~ '
' coo/O/)’eJJ/m,q
J

24
an ecample 1 regis ke moiyect
f__,_’#———E e

|

— | Trmedi'af< Adc:"yess g S -
i ZM immedbart c:?c/o/‘yesk_{‘fygfo, moole e
I ogezyana/ s SEeciﬁf'ed oy R [pshrec oD
T jiself, epcamplet Ve , ’
1—2 My Al oS Meve OS %) ')’657/5%07 A. .
W wALS nstruchovs in tle codeform
| odd 06 To jHne Content st flee

_ 2) ADI 06 ——
= acecumudator 1 0l

/—"_C}’_G—J_flg. ’/"L(_,(ln‘S"!LfU’CfLTUY) R4, ?"O‘(Cocé(ﬁnm
Hiese ns bruchens Mk, 2nd b’;f’/‘ﬂ

T gpecihes .o:_lda
W Is an eDéaJY‘«Plf st mee_df'a}—(’da/cﬂre-
/JiMD s 16- bit Sada wlicdh Ts grven in M
M itself . 71 is 4o be ’OC‘C/Lch ‘nto H-L)oa,'),
P E Addressing i~ Juene e centUn

—> Implici? . ‘
_ing buchots wlich openate on tecontent of Hre

R SIS | e £ n
“acewmulatoy sucli insbuchims Ao not Veqrure PRI

————— Jyess oF tlx operand . & cr A, RAL, RAR do‘

s |

Scanned by CamScanner

| classifcakon o7 Instractons - B

AN fnﬂshuc/fan (s a commen of g/f:/en to

|| tle compuler +o pexform a specifi'ed opeyakn
an _Grven deta. Tl [pshuction set of < AP

|| 0s #te collecfion of ftue instruckong (Huak

| 5 designed ro execate. . Taese yustracho.
e K:L Int-el cor&qvaﬁ‘on. 7 Loy cannot be ;
used by otther AP mandfacturers., 7he

PrOgyammen Ccan) Wyl a Progyam) assembl

language wsing these sty ctions

Scanned by CamScanner

e e ——

(7—&‘&33 /“/757LYU('7L7‘O)’)5‘ haye been (/a_gj/",@‘(,q/
LA ,<_,‘,_,(hn_f/73 1tk 7%/{0&0/‘4;7 Froups -, -
| pata Tyeansfer ‘grvup
2N Avirh melc poup
3) J,Oa-(°c cel i{'/qu;]u/:'
) | Bryanch control gpouf
S|l /0 and Mczc&fn o COntro/ Froup.

Data dransfery G1YOUP " Tnshuetons allvch cnve
Lised Fo tveansfer olata from one YegSiery 7O
cnotliery megislor, from _memory to resrsien
O registey to memavy, Come unclen s Ot voup
Ezamp!ve.s are 5 Moy, /MV.I, IXT, LDA ,STA =ef<.
u)&,er)' ey instye ction It data trapsfer Vﬁfrucqb
s epcecuded data s Syeens Perred Fom e
|| Secvce ToO 7lee _lesbrnation writtous aﬁﬁ/y;’ﬁg
e contents of e sounCe. for example, Wity
A0y B, B s opcecedes e content of 7t € 915 fery
B s copied into vegistenr B, and e content o
vegistey B yemains uraltenred . SimJlanly
Wlen LDA 2800 /s oo ec tled 7l conter £ ot
e memovy /O(Q/?bf) 2500 15 JOc:zc[Pc/ /o Fee
T aecwamudatoy . gal tle content IF Ul memory
localion 2Spo remeuns cnalt-ered

Irithmelic &tvoup:

o :;i’i@f_insﬁac fons of Hus Froup me’@ o i
| anviHomeltdc oP@TqﬁbrLB sucl, <8 adds tron
sub stva chion ; Inevement I clecyement It A
[Content of a yegistey oy menory.

el Gramples an® . ADD, 4uB .3INR , DAD Sle. i

PR b Py

o
Scanned by CamScanner

Lﬂgffcaf GIYo P -
The instrections ander s group perform

logieal operration Sweh «s AND, oR, CompPare,
POt ate , et -

Exeunples ane 5 ANR, xRAH, ORPA, cMP, RPAL elc

Byench conbrol &troyp .

This group includes +ie instruckion’ +ov

condi FHonal and wnconcitional jump, Swb o ctrive

call curd oetuvn, and vrestaylt.

£?V4'rn»fjl'€‘g ant jMZD/ J<, J=z, CHLL/CZ//?ST efc.

_1'/0 and Machine coN ol @mupg

TS GO Up includes e Mnstyuekons Ffoy

inpet /Oa/P(,L/‘ PoyFs, Stack aund machine

contyol - | _
Ex les ane : IN, OUT, PUSH, POP MLT ot

Scanned by CamScanner

'
!

¢

B il

4.6 INTEL 8085 INSTRUCTIONS

- Some of Ix;:e_l 808? mStf“Ctions are frequently, some occasionally and some seldom used by the
programmer. It 15 not necessary that one should learn all the instructions to understand simple

programs. The beginner can learn about 15 to 20 important instructions such as MOV, MVI, LXI
LDA:, LHLC?, ‘STAI, SHLD, ADD, ADC, SUB, JMP JC, JNC,] Z, JNZ, INX, DCR, CMP etc,, and start to
undLrst.an Simple programs given in Chapter 6. While learning programs he can understand new
instructions which he has not learnt earljer.

~ The operation codes (opcodes) are given in Appendix II. The explanations of the most instruc-
tions are given in the subsequent subsections.

4.6.1 Data Transfer Group MOV ry, ra
(Move data; Move the content of the one register to another).

[r1] < [r2]. States: 4. Flags: none. Addressing: register.Machine cycle: 1.

The content of register , is moved to register r,. For example, the instruction MOV A, B moves
the content of register B to register A. The instruction MOV B, A moves the content of register A to
register B. The time for the execution of this instruction is 4 clock period. One clock period is called
State. No flag is affected.

MOV r, M. (Move the content of memory to register).

[r] « [[H - L]]. States: 7. Flag none. Addressing : register indirect. Machine cycles: 2.

The content of the memory location, whose address is in H-L pair, is moved to register r.

Example

LXIH, 2000 H - Load H-L pair by 2000H.
MOV B,M Move the content of the memory location 2000H to register B.
HLT Halt.

In this example the instruction LXI H, 2000 H loads H-L pair with 2000 H which is the address of
a memory location. Then the instruction MOV B, M will move the content of the memory location

2000H to register B.

MOV M, r. (Move the content of register to memory).

[[H—L]j ¢ [r]. States: 7. Flags: none. Addressing: reg. indirect. Machine cycles: 2.

The content of register r is moved to the memory location addressed by H-L pair. For example,
MOV M, C moves the content of register C to the memory location whose address is in H-L pair.

MVIr, data. (Move immediate data to register). |
[r] « data. States: 7. Flags: none. Addressing: immediate. Machine cycle: 2.

The 1st byte of the instruction is its opcode. The 2nd byte of the instruction is the data which is
moved to register r. For example, the instruction MVI A, 05 moves 05 to register A. In the code fqrm
it is written as 3E, 05. The opcode for MVI A is 3E and 05 is the data which is to be moved to regiser
A.

MVI M, data. (Move immediate data to memory).

[[H - L]] « data. States: 10. Flags: none. Addressing: immediate/reg. indirect. Machine cycle: 3.

The data is moved to memory location whose address is in H-L pair.

Example
LXI H, 2400H Load H-L pair with 2400H.
MVI M, 08 Move 08 to the memory location 2400H.

HLT : Halt.

Scanned by CamScanner

In the above example the instruction LXI H, 2400 H loads H-L'. pair WIBI;; 2400 H which i .
address of a memory location. Then the instruction MVI M, 08 will rpove to r.nemory locatk)n
2400H. In the code form it is written as 36, 08. The opcode for MVI M is 36 and 08 is the data whigy |
is to be moved to the memory location 2400H.

LXIrp, data 16. (Load register pair immediate).

[rp] « data 16 bits, [rh] « 8 MSBs, [rl] < 8 LSBs of data.

States: 10. Flags: none. Addressing: immediate. Machine cycles: 3. o o

This instruction loads 16-bit immediate data into register pair rp. This instruction is for Tegiste
pair; only high order register is mentioned after the instruction. For example, Hin the instruction
H stands for H-L pair. Similarly, LXI B is for B-C pair. LXIH, 2500H loads ZSOOH into H-L pair. H iy,
2500H denotes that the data 2500 is in hexadecimal. In the code form it is written as 21, 00, 25, Ty,
Ist byte of the instruction 21 is the opcode for LXI H. The 2nd byte 00 is 8 LSBs.of the d.ata and it
is loaded into register L. The 3rd byte 25 is 8 MSBs of the data and it is loaded into register H,

LDA addr. (Load Accumulator direct).

[A] «[addr]. States: 13. Flags: none. Addressing: direct. Machine cycles: 4.

The content of the memory location, whose address is specified by the 2nd and 3rd bytes of the
instruction; is loaded into the accumulator. The instruction LDA 2400 H will load the content of the
memory location 2400 H into the accumulator. In the code form it is written as 3A, 00, 24. The Istbyte

3A is the opcode of the instruction. The 2nd byte 00 is of 8 LSBs of the memory address. The 3rd byte |
24 is 8 MSBs of the memory address.

STA Addr. (Store accumulator direct).
[addr] < [A]. States: 13. Flags: none. Addressing: direct. Machine cycles: 4.

The content of the accumulator is stored in the memory location whose address is specified by

the 2nd and 3rd byte of the instruction. STA 2000H will store the content of the accumulator in the
memory location 2000H.

LHLD addr. (Load H-L pair direct).

[L] & [addr], [H] < [addr + 1]. States: 16. Flags: none. Addressing;: direct. Machine cycles: 5.

The content of the memory location, whose address is specified by the 2nd and 3rd bytes of the |
instruction, is loaded into register L. The content of the next memory location is loaded into register
H. For example, LHLD 2500H will load the content of the memo

ry location 2500 H into register |
The content of the memory location 2501H is loaded into register H '
SHLD addr. (Store H-L pair direct)
[addr] « [L], [addr + 1] < [H]. States: 16. Flags: none. Addressing: direct. Machine cycles: i
The content of register L is stored in the memory location whose address is specified by the Iné
and 3rd bytes of the instriiction. The content of re

gister H s stored in the next memory location. F* |
example, SHLD 2500H will store the content of register Lin the me

mory location 2500H. The conte’" |
of register H is stored in the memory location 2501H. .
LDAX rp. (LOAD accumulator indirect)

[A] « [[rp]]. States; 7. Flags; none. Addressing: register indirect. Machine cycles: 2. o b

The content of the memory location, whose address is in the register pair rp, is loaded int0 thij ;
accumulator. For example, LDAX B will load the content of the memory location, whose addfes's i
in the B-C pair, into the accumulator. This instruction is used only for

B-C and D-E register pai™
STAX rp. (Store accumulator indirect)
[[rp]] « [Al]. States: 7. Flags: none. Addressing: register indirect. Machine cycles: 2.

Scanned by CamScanner

- Th;conten;‘oiéhg_?‘:?gu]f;]tor is stored in the memory location whose address is in the register
air rp. For exampre, A Dwill store Fhe content of the accumulator in the memory location whose
address is in D-E pair. This instruction is true only for register pairs B-C and D-E.
XCHG. (Exchange the contents of H-L with D-E pair)
[H-L] «— [D-E].State.s:tl. Flags: none. Addressing: register. Machine cycles: 1.
The contents of H-L pair are exchanged with contents of D-E pair.

4.6.2 Arithmetic Group

ADDr. (Add register to accumulator)

[A] « [A] +[7]. Stétes: 4. Flags: all. Addressing: register. Machine cycle : 1.

The content of register r is added to the content of the accumulator, and the sum is placed in the
accumulator.

ADD M. (Add memory to accumulator)

[A] « [A] + [[H-L]]. States: 7. Flags: all. Addressing: reg. indirect, Machine cycles: 2.

The content of the memory location addressed by H-L pair is added to the content of the ac-
cumulator. The sum is placed in the accumulator.

ADCr. (Add register with carry to accumulator.)

[A] « [A] + [r] + [CS]. States: 4. Flags: all. Addressing: register. Machine cycles : 1.

The content of register r and carry status are added to the content of the accumulator. The sum
is placed in the accumulator.

ADC M. (Add memory with carry to accumulator)

[A] « [A] + [[H-L]] [CS]. States: 7. Flags: all. Addressing: reg. indirect. Machine cycles: 2.
The content of the memory location addressed by H-L pair and carry status are added to the content

of the accumulator. The sum is placed in the accumulator.

ADI data. (Add immediate data to accumulator)

[A] < [A] + data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2.

The immediate data is added to the content of the accumulator. The 1st byte of the instruction is
its opcode. The 2nd byte of the instruction is data, and it is added to content of the accumulator. The
sum is placed in the accumulator. For example, the instruction ADI 08 will add 08 to the content of
the accumulator and place the result in the accumulator. In code form the instruction is written as

Cé, 08.

ACl data. (Add with carry imme
[A] « [A] + data + [CS]. States: 7.
The 2nd byte of the instruction (which i
the accumulator. The sum is placed in the accumul

DAD rp. (Add register paid to H-L pair) . . |
[H-L] « [H-L] + [rp]. States: 10. Flags: CS. Addressing: register. Machine cycles: 3.
The contents of register pair rp aré added to the contents of H-L pair and the result is placed in
H-L pair. Only carry flag is affected.
SUBT. (Subtract register from accumulator) . |
[A] « [A] - [r]. States: 4 Flags: all. Addressing: register. Machine cycles: 1. |
The content of register r is subtracted from the content of the accumulator, and the result is

Placed in the accumulator.
SUB M. (Subtract memory from accumulator).

diate data to accumulator)
Flags: all. Addressing: immediate. Machine cycles: 2
s data) and the carry status are added to the content of

ator.

Scanned by CamScanner

N

[A] « [A] - [[H-L]]. States: 7. Flags: all. Addressing: reg. @mre;;ahclltzzh;x ncl}il(_?}:i (.)Zt
The content of the memory location addressed by H-L pair1s su Tentofy,
accumulator. The result is placed in the accumulator.) |
SBB . (Subtract register from accumulator with OITOW). . .
[A] « [z(ﬂ -[1- [ch1. States: 4. Flags: all. Addressing: register Mactlclal;eocf)’,c:: 2'c111mu1 :
The content of register r and carry status are subtracted from the con ator T,
result is placed in the accumulator. o |
BB M. (Subtract memory from accumulator with borrow). o .
[SA] — [A](— [[H-L]] - [CS]r.}étates: 7. Flags: all. Addressing: reg. indirect. Machine lC)?:'Cles: 2. |
The content of the memory location addressed by H-L pair and carry status are subtracted fry,
the content of the accumulator. The result is placed in the accumulator.
SUl data. (Subtractimmediate data from accumulator) .
[A] < [A] - data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2.
The 2nd byte of the instruction is data. It is subtracted from the content 9f the accumulator, T
result is placed in the accumulator. For example, the instruction SUI 05 will subtract 05 from t.he
content of the accumulator and place the result in the accumulator. In the code form the above .
struction is written as D6, 05. |
SBl data. (Subtractimmediate data from accumulator with borrow).
[A] < [A] - data - [CS]. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2
The data and carry status are subtracted from the content of the accumulator, The result s placed
in the accumulator
- INRT. (Increment register content)
[r] <~ [r] + 1. States: 4. Flags: all except carry flag. Addressing : register, Machine cycle:1.
The content of register r is incremented by one. All flags except CS are affected.
INRM. (Increment memory content)

[[H-L]] « [[H-L]] + 1. States: 10. Flags: all except carry flag. Addressing: reg. indirect.
Machine cycles: 3.

The content of the memory location addressed by H-

L pair is in . All flagsex
cept CS are affected. P cremented by one. All flag

DCRr. (Decrement register content)

[r] «[r] - 1. States: 4. Flags: all except carry flag,
The content of register r is decremented by one. A
DCR M. (Decrement memory content)

Addressing: register. Machine cycles: 1.
1l flags except CS are affected.

H-L]] « [[H-L]] - 1. States: 10. Flags: . |
CYdi 5y 1] < [[H-L]] States: 10. Flags: all except carry flag, Addressing: reg. indirect. Machi®
The content of the memory location addressed by 1. ir i flag’ |
except CS are affected. Y H-L pair is decremented by one. All

INXrp. (increment register pair)

[7p] « [rp] + 1. States: 6. Flags: none, Addres
The content of the register pair 1p is increme

DCXrp (Decrement register pair)

[rp] «[rp] — 1. States: 6. Flags: none, Addressing: register. Machine cycles: 1.
The content of the register pair rp is decremented by one. No flag is affected.

sing: register, Machine cycles:1.
nted by one. No flag is affected.

Scanned by CamScanner

DAA. (Decimal adjust accumulator)
Gtates: 4. Flags: all. Machine cycle : 1.

The in§truCt10n DAA is used .in the program after ADD, ADI, ACI, ADC, etc instructions. After
the execution of ADD, ADC, et nstructions the result is in hexadecimal and it is placed in the ac-
cumulator. The DAA Instruction operates on this result and gives the final result in decimal system.
It uses carry @d a.ux1hary carry for decimal adjustment. 6 is added to 4 LSBs of the content of the
accumulator if their value lies in between A and F or the AC flag is set to 1. Similarly, 6 is also added
to 4 MSBs of the content of the accumulator if their value lies in between A and F or the CS flag is set
to 1. All status flags are affected. When DAA is used data should be in decimal numbers.

4.6.3 Logical Group

The instructions of this group perform AND, OR, EXCLUSIVE-OR operations; compare, rotate
or take complement of data in register or memory.

ANAT. (AND register with accumulator)

[A] <~ [A] A []. States: 4. Flags : all. Addressing: register. Machine cycles: 1.

The content of register is ANDed with the content of the accumulator, and the result is placed
in the accumulator. All status flags are-affected. The flag CSis cleared, i.e. itis set to 0. Auxiliary carry
flag ACis set to 1.

ANA M. (AND memory with accumulator)

[A] « [A] A [[H-L]]. States: 7. Flags: all. Addressing: reg. indirect. Machine cycles: 2.

The content of the memory location addressed by H-L pair is ANDed with the accumulator. The
result is placed in the accumulator. All flags are affected. The CS flag is set to 0 and ACto 1.

ANI data. (AND immediate data with accumulator)
[A] < [A] A data. States: 7. Flags: all. Addressing: immediate. Machine cycles : 2.
The 2nd byte of the instruction is data, and it is ANDed with the content of the accumulator. The

result is placed in the accumulator. The CS flag is set to 0 and AC to 1.

ORAr. (OR register with accumulator)

[A] « [A] v [r] States: 4. Flags: all. Addressing: register. Machine cycles : 1.

The content of register ris ORed with the content of the accumulator. The result is placed in the
accumulator. All status flags are affected. Carry and auxilary carry are cleared i.e. the CSand AC flags
are set to (.

ORA M. (OR memory with accumulator) o |

[A] «[A] v [[H-L]]. States: 7. Flags: all. Addressing; reg. indirect. Machine cycles: 2.

The content of the memory location addressed by H-L pair is ORed with the content of the ac-
cumulator. The result is placed in the accumulator. The CS and AC flags are set to 0.

ORI data. (OR immediate data with accumulator) '
[A] «[A] v data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2.

The 2nd byte of the instruction is data, and it is ORed with the content of the accumulator. The
result is placed in the accumulator. All status flags are affected. The CS and AC flags are set 0.

XRAr. (EXCLUSIVE - OR register with accumulator) |
[A] « [A] V [7] States: 4. Flags: all. Addressing: register. Machine cycles: 1.
The content of register r is EXCLUSIVE - ORed with the content of the accumulator. The result

‘s placed in the accumulator. All status flags are affected. The CS and AC flags are set to 0.
- XRAM. (EXCLUSIVE - OR memory with accumulator)

Scanned by CamScanner

[A] « [A] V [[H-L]]. States: 7. Flags: all. Addressing: reg. ir.ld.irect. Machine cc))z;lez: 2..
The content of the memory location addressed by H-L pair 15 EXCLUSﬂIVE- effwnth the con,
tent of the accumulator. The result is placed in the accumulator. All status flags are affected. The(y

and AC flags are set to 0.

XRI data. (EXCLUSIVE - OR immediate data with accumulator) .

[A] < [A] V data. States: 7. Flags: all. Addressing: immediate. Machme. cycles: 2.

The 2nd byte of the instruction is data, and it is EXCLUSIVE-ORed with the content of the a
cumulator. The result is placed in the accumulator. All flags are affected. The CS and AC flags are g

to 0-

CMA. (Complement the accumulator)

[A] « [A]. States: 4. Flags: none. Machine cycles : 1. Addressing: implicit.

1’s complement of the content of the accumulator is obtained, and the result is placed in th,
accumulator. To obtain the 1’s complement of a binary number 0 is replaced by 1, and 1 by 0. Fy

example, one’s complement of 1100 is 0011.

CMC. (Complement the carry status)
[CS] « [CS]. States: 4. Flags: CS, Machine cycle: 1.
The CS flag is complemented. Other flags are not affected.

STC. (Set carry status)
[CS] « 1. States: 4. Flags: CS. Machine cycles : 1.
The status flag CS is set to 1. Other flags are not affected.

CMPr. (Compare register with accumulator)

[A] — [r]. States 4. Flags: all. Addressing: register. Machine cycles: 1.

The content of register r is subtracted from the content of the accumulator and status flags areset
according to the result of the subtraction. But the result is discarded. The content of the accumulator
remains unchanged. |

CMP M. (Compare memory with accumulator)

[A] - [[H-L]]. States: 7. Flags: all. Addressing: reg. indirect. Machine cycles: 2.

The content of the memory location addressed by H-L pair is subtracted from the content of the
accumulator, and status flags are set according to the result of the subtraction. But the result is dis
carded. The content of the accumulator remains uncharged.

CPl data. (Compareimmediate data with accumulator)

[A] - data. States: 7. Flags: all. Addressing: immediate. Machine cycles: 2.

The 2nd byte of the instruction is data, and it is subtracted from the content of the accumulator
The status flags are set according to the result of subtraction. But the result is discarded. The content
of the accumulator remains unchanged.

RLC.. (Rotate accumulator left)

[An+1] < [An] [Ao] < [A7], [CS] « [A7].

States: 4. Flags: CS. Machine cycles : 1. Addressing; implicit.

The content of the accumulator is rotated left by one bit. The seventh bit of the accumulator’
moved to carry bit as well as to the zero bit of the accumulator. Only CS flag is affected. See Fig: 4]

CARRY STATUS ACCUMULATOR

Fig. 4.1 Schematic Diagram for RLC.

Scanned by CamScanner

RRC. (Rotate accumulator right)

[A7] < [Aol, [CS] « [Ao], [A)] [An 1.

States: 4. Flags: CS. Machine cycles : 1. Addressing: implicit.

The content of the .accumulator is rotated right by one bit. The zero bit of the accumulator is
moved to the seventh bit as well as to carry bit. Only CS flag is affected. See Fig. 4.2.

s =) mEny

CARRY STATUS ACCUMUL ATOR

Flg. 4.2 Schematic Diagram for RRC.

RAL. (Rotate accumulator left through carry)
[An + 1] o [An]: [CS] «— [A7], [AO] «— [CS]
States: 4. Flags: CS. Machine cycles : 1. Addressing: implicit.

The content of the accumulator is rotated left one bit through carry. The seventh bit of the ac-
cumulator is moved to carry, and the carry bitis moved to the zero bit of the accumulator. Only carry
flag is affected. See Fig. 4.3.

(s A7 AQ

CARRY STATUS ACCUMULATOR
Fig. 4.3 Schematic Diagram for RAL.

RAR. (Rotate accumulator right through carry)

[A,] < [A,41], [CS] < [Aql, [A7] « [CS]

States : 4 Flags : CS. Machine cycle : 1. Addressing implicit.

The content of the accumulator is rotated right one bit through carry. The zero bit of the ac-

cumulator is moved to carry, and the carry bit to the seventh bit of the accumulator. Only CS flag is

affected. See Fig. 4.4.
‘—- €s A7 Ao}_ J

CARRY STATUS ACCUMULATOR
Fig. 4.4. Schematic Diagram for RAR.

4.6.4 Branch Group
The instructions of this group change the normal sequence of the program. There are two types
- of branch instructions: conditional and unconditional. The conditional branch instructions transfer
?he program to the specified label when certain condition is statisfied. The unconditional branch

- Instructions transfer the program to the specified label unconditionally.
JMP addr (label). (Unconditional jump: jump to the instruction specified by the address).
[PC] « Label. States: 10. Flags: none. Addressing: immediate. Machine cycles: 3.

~ Byte2nd and byte 3rd of the instruction give the address of the label where the program jumps.
The address of the label is the address of the memory location for next instruction to be executed. The

TOgram jumps to the instruction specified by the address (label) unconditionally.

Scanned by CamScanner

SR
Conditional Jump addr (label). After the execution of thg conditio'n.al jump _if‘Sh’Ucﬁgn il
program jumps to the instruction specified by the address (label) 1f .the spec1.f1.ed condition s g e: |
The program proceeds further in the normal sequence if the spec1f1ed.cond1t10n 1s ot fulfilleq 1,
condition is true and program jumps to the specified label, the execution of a conditiona] jump t,

3 machine cycles: 10 states. If condition is not true, only 2 machine cycles; 7 states are required f, e

execution of the instruction.

() JZaddr (label). (Jump if the result is zero)
[PC] « address (label), jump if Z = 1. States: 7/10. Flags: none. Addressing: immediate,
Machine cycles: 2/3.

The program jumps to the instruction specified by the address (label) if the result is zero

zero status Z = 1). Here the result after the execution of the preceding instruction is under co
tion.

(i.e. the

(i) JNZ addr (label). (Jump if the result is not Zero)

[PC] « address (label), jump if Z = 0. States: 7/10. Flags: none. Addressing : immediate,
Machine cycles: 2/3.

The program jumps to the instruction specified by the address (label) if the result is non-zero j; |
the zero status Z =0).

(iii) JC addr (label). (J ump if there is a carry)

[PC] - address (label), jump if CS = 1. States: 7/10. Flags: none. Addressing : immediate.
Machine cycles: 2/3.

The program jumps to the instruction specified by the address (label) if there is a carry (i.e. the
he execution of the preceding instruction is under con |

carry status: CS = 1). Here the carry after t
sideration.

(iv) JNC addr (label). (Jump if there is no carry)

[PC] « address (label), jump if CS = 0. States: 7/10. Flags: none. Addressing : immediate.
Machine cycles: 2/3.

The program jumps to the instruction specified by the address (1abel) if there is no carry (j.e.the |

carry states CS = 0).
(v) JP addr (label). (Jump if the result is plus)
[PC] < address (label), jump if S = 0. States: 7/10. Fla
Machine cycles: 2/3.
The program jumps to the instruction specified by the address (label)
(vi) JM addr (label). (Jump if the result is minus)
[PC] «— address (label), jump if S = 1. States: 7/10. Flags: none. Addres
Machine cycles: 2/3.)
If the result is minus the program jumps to the instruction specified by the ad’dress (label)-
(vii) JPE addr (label). (Jump if even parity)
[PC] ¢ address (label), jump if even parity: the parity status P = 1, States: 7 /10. Flags: noné:
Addressing: immediate. Machine cycles: 2/3. "
If the result contains even number of 1s, the program jumps to the instruction sp ecified by
address (label). R
viil JPO addr (label). Jumpifo p.anty | ' o
[(pc)] « address (label), jump if odd parity ; the parity status P =0, States: 7/10, Flags: noné
Addressing: immediate, Machine cycles: 2/3.

gs: none. Addressing: immediate.
if the resylt is plus.

sing: immediate.

Scanned by CamScanner

nSidera. '

. S PSS S U —

If the result contains odd number of 1s, the program jumps to the instruction specified by the
address (label).

CA:.L addr (IBIE)C!:E['_)I- (Unconditional CALL: call the subroutine dentified by the address)

[[SP] - 1]« | l, Save the address of the next instruction of the program in the stack.

P] - 2] [PCL],

[SP] « [SP] - 2
[PC] « addr (label)

ity ‘18' Flag's; Hone, Addressing: immediate/ reg. indirect. Machine cycles: 5.

CALL instruction is used to calla subroutine. Before the control is transferred to the subroutine,
th? addr‘ess of the next instruction of the main program is saved in the stack. The content of the stack
pointer is decremented _by two to indicate the new stacktop. Then the program jumps to subroutine
starting at address specified by the label.

Conditional CALL addr (label)
[[SP] = 1] « [PCH], [[SP] - 2] « [PCL),
[PC] < addr (label), [SP] « [SP] - 2.

States: 9/18. Flags: none. Addressing: immediate/reg. indirect. Machine cycles: 2/5. If the con-
dition is true and program calls the specified subroutine, the execution of a conditional call instruc-
tion takes 5 machine cycles; 18 states. If condition is not true, only 2 machine cycles; 9 states are
required for the execution of the instruction.

(i) CC addr (label) Call subroutine if carry status CS = 1.

(i) CNC addr (label) Call subroutine if carry status CS = 0.
(1)) CZ addr (label) Call subroutine if the result is zero; the zero status Z = 1.
(iv) CNZ addr (label) Call subroutine if the result is not zero; the zero status Z = 0.
(v) CP addr (label) Call subroutine if the result is plus; the sign status S = 0.
(vi) CM addr (label) Call subroutine if the result is minus, the sign status S=1.
(vii) CPE addr (label) Call subroutine if even parity; the parity status P =1.
(viii)) CPO addr (label) Call subroutine if odd parity; the parity status P = 0.

RET. (Return from subroutine)
[PCL] «[[SP]},

[PCH]« [[SP] + 1],
[SP] «[SP]+2.

States: 10. : none. Addressing: o .
Rg';eisn:?miltaigi 12 used at the end of a subroutine. Before the execution of a subroutine the ad-

] i in the stack. The execution of RET instruc-

d i tion of the main program is saved in t

. tilc‘)‘-’:-i (r);fn thse é\ae:; Es:;;i, eginaddress from the stack to the the content (?f the st‘.mck

=5 pointer isg incremented by 2 to indicate the new stack top. Then the program jumps to the instruction

of the main program next to CALL instruction which called the subroutine.

‘ ~ Conditional Return

- [PCL] « [[SP]], [PCH] « [[SP] + 1],

- [SP]. «[SP]+2. , dition

. o rew. indirect. Machine cycles: 1/3. If the condition is true

. States: 6/12. Flags: none. Addressing: I€g i e e coi,\ ditional return instruction takes

an i cu
and the from the subroutine, theexe : :
3'maéh'i§:o grcalg rle;;x::es If condition is not true only one machine cycle, 6 states are required.

reg. indirect. Machine cycles: 3.

Scanned by CamScanner

Return from subroutine if carry status CS = 1.

) e ine if status CS = 0.

i) RNC Return from subroutine if carry .
((”3 RZ Return from subroutine if the result is zero; the zero status Z=1.
iii

(i) RNZ Return from subroutine if the result is not zero; the zero status Z = 0.
v

(v) RP Return from subroutine if the result is pl}ls; the Sigf‘ status S Z (1 .
(vi) RM Return from subroutine if the result is minus, .the sign status5=1.

(vii) RPE Return from subroutine if even parity, the parity status P=1.

(viii) RPO Return from subroutine if odd parity, the parity status P = 0.
RST n (Restart). : \
[[SP] - 1] « [PCH], [[SP] - 2] « [PCL],
[SP] « [SP] - 2,[PC] «8 times n.
States: 12. Flags: none, Addressing: reg. indirect. Machine cycles : 3.
Restartis a one-word CALL instruction. The content of the program counter is saved in the stack

The program jumps to the instruction starting at restart location. The address of the restart location
is 8 times n. The restart instruction and locations are as follows:

Instruction Opcode Restart Locations

RST 0 C7 0000
RST1 CF 0008
RST2 D7 > 0010
RST 3 ~ DF 0018
RST 4 E7 0020
RST5 EF 0028
aT'6 F7 0030
RST7 FF

0038
PCHL. (Jump to address specified by H-L pair)

[PC] « [H-L], [PCH] « [H], [PCL] « [L]
States: 6. Flags: none. Addressing: register. Machine cycle: 1.
The contents of H-L pair are transferred to
: : : program counter. The contents of register H are
moved to high order 8 bits of register PC., i TeEien W
v ol g . gister PC. The contents of register L are transferred to low order 8 bits

4.6.5 Stack, I/0 and Machine Control Group

IN port-address. (Input to accumulator from [/O port)

[A] < [Port]. States: 10. Flags: none. Addressing: direct. Machine cycles: 3

The data available on the port is moved to the accumulator. After ingtrycs:
the port is specified. The 2nd byte of the instructionfcontains the adgﬁ;‘: gfuti\t;on IN, the addres: g;
a port is an 8-bit address. For example, IN 01. The address of the port B of an 50(? The addrisofa
~ Iicroprocessor kit is 01. port 8255.

OUT port-address. (Output from accumulator to I/0Q port)
[Port] « [A]. States: 10. Flags: none. Addressing: direct. Machine cycles: 3,

The content of the accumulator is moved to the port specified by its addresg, After the OUT
instruction, the port address is specified. The 2nd byte of the instruction contains the address of th¢

Scanned by CamScanner

o5

f;r;i t‘f"?sr gg.ample, OUT00. The address of the port A of an 1/0 port 8255.1 of a microproces-
PUSH rp. (Push the content of register pair to stack)
[[SP] — 1] < [rh],
[[SP] - 2] < [71],
[SP] « [SP] - 2.
States: 12. Flags: none. Addres§mg: register(source)/ reg. indirect(destination), Machine cycles: 3.
The content of the register pair rp is pushed into the stack.
PUSH PSW. (PUSH processor status word)
[[SP] = 1]« [A]
[[SP] - 2] < PSW (Program Status Word)
[SP] «[SP] - 2.
States: 12, Flags: none. Addressing: register(source)/ reg.indirect(destination), Machine cycles: 3.
The content of the accumulator is pushed into the stack. The contents of status flags are also
pushed into the stack. The content of the register SP is decremented by 2 to indicate new stacktop.
POP rp. (Copy two bytes from the top of the stack into the specified register)
[r]] « [[SP]]
[h] « [[SP] + 1]
[SP] < [SP] + 2.
States: 10. Flags: none. Addressing: register(destination)/reg.indirect (source),Machine cycles: 3.
The content of the register pair, which was saved earlier is moved from the stack to the rigister
pair.
POP PSW. (Copy two bytes from the top of the stack into PSW and Accumulator)
PSW « [[SP]]
[A] « [[SP] + 1]
[SP] « [SP] + 2.

States: 10. Flags: all. Addressing: reg. indirect. Machine cycles: 3.
The processor status word which was saved earlier during the execution of the program is

moved from the stack to PSW. The content of the accumulator which was also saved is moved from

the stack to the accumulator.

HLT (Halt)

States: 5. Flags: none. Machine cycle: 1. o |
When this instruction is executed, any further program executionis stopped. The microproces-

Sor remains in Halt state. An interrupt or reset is necessary to exit from the Halt state.

XTHL. (Exchange stack-top with H-L)
[L] - [[SP]] -
e o + 1 register indirect. Machine cycles: 5.

States: 16. Flags: none. Addressing;
Theiintemsagfs tlr:: register L are exchanged with the byte of the stack-top. The contents of the H
Tegister exchanged with the byte below the stack-top.

SPHL (Move the contents of H-L pair to stack pointer)

[H-L] — [SP].

. States: 6. Flags: none. Addressing: register. Machine cycle: 1.

Scanned by CamScanner

The contents of H-L pair are transferred to the SP register.
El. (Enable interrupts)

States: 4. Flags: none, Machine cycle: 1.

When this instruction is executed the interrupts are enabled.
DI (Disable Interrups)

States: 4. Flags : none, Machine cycle: 1

When this instruction is executed interrups are disabled.
SIM (Set Interupt Masks)

States: 4. Flags: none, Machine cycle: 1.

When this instruction is executed bits 0-5 of the accumulator are used in programming the res.

tart interrupt masks. Bits 6-7 of the accumulator are used in making serial output on SOD line, S
details in Chapter 7, Section 7.5: Interrupts of Intel 8085.

RIM (Read Interrupt Mask)

States: 4. Flags: none. Machine cycle: 1.

When this instruction is executed, the accumulator is loaded with pending interrupts, the restar
interrupt masks and the contents of SID. See details in Chapter 7, Section 7.5: Interrupts of Intel 8085.

NOP (No Operation)

States: 4. Flags: none. Machine Cycle: 1.

No operation is performed when this instruction is executed. The re

gisters and flags remain
unaffected.
PROBLEMS
1. Classify 8085 instructions in various groups. Give examples of instructions for each group.
2. What are the various types of data formats for Intel 8085 instructions? Give examples for each
type of data format.
3.

Discuss various types of addressing modes of Intel 8085 with suj
4. Explain what operation will take

LXIrp, data; LDA addr, LHLD a
5. Explain what operation is
DADrp, DAA,CMPr, C

table examples.
place when the following instructions are executed:
ddr, STA addr, and SHLD addr.

performed when the following instructions are executed:
MP M, CMA, RAL, RAR, PUSH rp and POP rp.

Scanned by CamScanner

