QUANTITATIVE APTITUDE

PERCENTAGE

PROF: RAVINDRA P. MANGRULKAR APTITUDE TRAINER

PIBM PUNE

Percentage

Percent means for every Cent (100)

So, when **percent** is calculated for any value, it means that we calculate **the value for every 100** of the actual value.

percent is denoted by the symbol %.

• For example, <u>x percent is denoted by x%</u>

• x% = x / 100

Example : 25% = 25/100 = 1/4

• To express x / y as a percent, we have x / $y = (x / y \times 100) \%$

Example : $1 / 4 = (1 / 4 \times 100)\% = 25\%$

RATIO TABLE

FRACT

ION

1/7

1/6

1/3

3/8

5/8

2/3

7/8

%	FRACT ION	%	FRACT ION	%
5	1/20	60	3/5	14(2/7)
8	2/25	75	3/4	16(2/3)
10	1/10	3(1/8)	1/32	33(1/3)
12	3/25	6(1/4)	1/16	37(1/2)
15	3/20	8(1/3)	1/12	62(1/2)
16	4/25	12(1/2)	1/8	66(2/3)
20	1/5	13(1/3)	2/15	97(1/2)
25	1/4			0/(1/2)

- If the **price** of a commodity **increases** by **R%**, the **reduction** in **consumption** so as **not to increase the expenditure**
 - $= [R / (100+R)] \times 100\%$
- If the price of a commodity **decreases** by **R%**, the **increase** in **consumption** so as **not to decrease the expenditure**
 - $= [R / (100 R)] \times 100\%$

EXAMPLES

- EXAMPLE 1: THE PRICE OF RICE FALLS BY 20%. HOW MUCH RICE CAN BE BROUGHT NOW WITH THE MONEY THAT WAS SUFFICIENT TO BUY 20 KG OF RICE PREVIUOSLY?
- <u>SOLUTION</u>: ACCORDING TO <u>FORMULA</u>

increase in consumption = $[R / (100-R)] \times 100\%$

- $= [(20 / (100 20)] \times 100\%$
- $= (20 / 80) \times 100 \%$

= 25%

<u>EARLIER 20 KG RICE WAS BROUGHT, NOW 25%</u> <u>MORE = 20 * (125/100)</u>

= <u>25 KG CAN BE BROUGHT</u>

EXAMPLES

- <u>EXAMPLE 2</u>: THE PRICE OF SUGAR IS REDUCED BY 25%. BUT INSPITE OF THE DECREASE, AKSHAY ENDS UP INCREASE HIS EXPENDITURE ON SUGAR BY 20%. WHAT IS THE % CHANGE IN HIS MONTHLY CONSUMPTION OF SUGAR?
- SOLUTION:
- LET AKSHAY USE TO CONSUME 100 KG FOR RS 100. DUE TO 25% REDUCTION IN PRICE, 100 KG IS FOR RS 75. DUE TO 20% INCREASE IN EXPENDITURE, PURCHASED FOR RS. 120
- FOR RS. 120 HE COULD BUY = (100/75) * 120 = 160KG. INCREASE IN CONSUMPTION = 160 - 100 = 60KG.
- % INCREASE IN CONSUMPTION = (60/100) * 100 = 60%.

- If the population of a town = P and it increases at the rate of R% per annum, then Population <u>after n years</u>
 - $= P^*[1+(R / 100)]^n$
- If the population of a town = P and it increases at the rate of R% per annum, then Population before n years
 - $= P / [1 + (R / 100)]^n$

EXAMPLES

- EXAMPLE 3: THE POPULATION OF A VILLAGE IS 100000. THE RATE OF INCREASE IS 10% P.A. FIND THE POPULATION AT THE START OF 3RD YEAR?
- **SOLUTION:** Population <u>after n years</u>
 - $= P^{*}[1+(R / 100)]^{n}$
 - $= 100000 * [(1 + (10 / 100)]^{2}]$
 - $= 100000 * (11/10)^{2}$
 - =<u>121000</u>

- If the present value of a machine = P and it depreciates at the rate of R% per annum, Then Value of the machine <u>after n years</u>
 = P*[1 (R / 100)]ⁿ
- If the present value of a machine = P and it depreciates at the rate of R% per annum, Then Value of the machine <u>before n years</u>
 = P / [1 (R / 100)]ⁿ

• **<u>THEOREM # 1</u>**:

IF <u>2 VALUES</u> ARE RESPECTIVELY <u>X%</u> AND <u>Y%</u> MORE THAN <u>A THIRD NUMBER</u>,

THEN THE 1^{ST} IS [(100 + X) / (100 + Y)] * 100% OF THE 2^{ND} .

• EXAMPLE 4:

- 2 NUMBERS ARE RESPECTIVELY 20% AND 50% MORE THAN THE THIRD NUMBER. WHAT % IS THE 1st OF THE 2ND?
- SOLUTION: ACCORDING TO FORMULA

 THE 1ST IS [(100 + 20) / (100 + 50)] * 100% OF THE 2ND

 THE 1ST IS (120/150) * 100% OF THE 2ND

 THE 1ST IS 4/5* 100% OF THE 2ND

 THE 1ST IS 80% OF THE 2ND.

• EXAMPLE 5:

- 2 NUMBERS ARE RESPECTIVELY 30% AND 40% LESS THAN THE THIRD NUMBER. WHAT % IS THE 2^{ND} OF THE 1^{ST} ?
- <u>SOLUTION</u>: ACCORDING TO <u>FORMULA</u>

THE 1^{ST} IS [(100 - 40) / (100 - 30)] * 100% OF THE 2^{ND}

THE 1^{ST} IS (60/70) * 100% OF THE 2^{ND}

THE 1ST IS (600/7)* 100% OF THE 2ND

THE 1^{ST} IS 85&(5/7)% = 85.71% OF THE 2^{ND} .

• <u>THEOREM # 2:</u>

IF A IS X% OF C AND B IS Y% OF C, THEN A IS (X/Y) *100% OF B.

• **EXAMPLE 6**:

2 NUMBERS ARE 20% AND 25% OF THE THIRD NUMBER. WHAT % IS THE 1ST OF THE 2ND?

• <u>SOLUTION</u>: ACCORDING TO <u>FORMULA</u>

= A IS (20/25) *100% OF B

= <u>A IS 80% OF B</u>

- THEOREM # 3: X% QUANTITY IS TAKEN BY 1ST, Y% IS TAKEN BY 2ND, REMAINING IS TAKEN BY 3RD, NOW <u>A</u> AMOUNT IS LEFT, THEN IN THE BEGINNING THERE WAS
 - = [A*100*100*100 / (100 X)*(100 Y)* (100 Z)]
- EXAMPLE 7: RAJ SPENDS 20% OF HIS MONTHLY ON HIS HOUSEHOLD EXPENDITURE, 15% OF THE REST ON BOOKS. 30% OF THE REST ON CLOTHES AND SAVES THE REST. ON COUNTING HE COMES TO KNOW THAT HE HAS FINALLY SAVED RS. 9520. FIND HIS MONTHLY INCOME.
- <u>SOLUTION:</u> ACCORDING TO FORMULA

= 20000.

• MONTHLY INCOME = 9520*100*100*100 / (80 * 85 * 70)

- THEOREM # 4: IF 1ST VALUE IS R% MORE THAN THE 2ND VALUE, THEN THE 2ND IS [R / (100 + R)] * 100
 % LESS THAN THE 1ST VALUE.
- THEOREM # 5 : SIMILARLY, IF 1ST VALUE IS R% LESS THAN THE 2ND VALUE, THEN THE 2ND IS [R / (100 - R)] * 100 % MORE THAN THE 1ST VALUE.
- EXAMPLE 8: IF A'S SALARY IS 25% MORE THAN THAT OF B, THEN HOW MUCH % IS B'S SALARY LESS THAN THAT OF A?
- **SOLUTION:** B'S SALARY LESS BY

[25 / (100+25)] * 100%

= <u>20%</u>

• <u>THEOREM # 6:</u>

IF THE VALUE OF A NUMBER IS 1ST INCREASED BY X% AND AGAIN INCREASED BY Y% THEN THE NET CHANGE IS ALWAYS [X + Y + (X*Y / 100)].

• <u>THEOREM # 7:</u>

- IF THE VALUE OF A NUMBER IS 1ST INCREASED BY X% AND AGAIN INCREASED BY Y% THEN THE NET CHANGE IS ALWAYS [X + Y + (X*Y / 100)].
- **EXAMPLE 9:** A SHOPKEEPER MARKS THE PRICE OF HIS GOODS AT 20% HIGHER THAN THE ORIGINAL PRICE. AFTER THAT, HE ALLOWS A DISCOUNT OF 10%. WHAT % PROFIT OR LOSS DID HE GET?
- **SOLUTION: NET CHANGE**
 - = [20 10 (20*10 / 100)] = + 8% + VE IS PROFIT

EXAMPLE 10:

THE HEIGHT OF A TRIANGLE IS INCREASED BY 40%. WHAT CAN BE THE **MAXIMUM % INCREASE IN LENGTH OF THE BASE** SO THAT THE **INCREASE IN AREA** IS RESTRICTED TO A **MAXIMUM OF 60%**?

SOLUTION:

LET THE MAXIMUM % INCREASE IN LENGTH OF THE BASE BE Y.

ACCORDING TO FORMULA

60 = [40 + Y + (40* Y) / 100] 60 = (4000 + 100Y + 40Y) / 100 6000 = 4000 + 140Y 2000 = 140Y Y = 2000 / 140 Y = 100 / 7Y = 14 & (2/7) = 14.28

EXAMPLE 11:

Two students appeared at an examination. One of them secured 9 marks more than the other and his marks was 56% of the sum of their marks. What are the marks obtained by them? Explanation :

Let the marks secured by them be x and (x + 9)Then sum of their marks = x + (x + 9) = 2x + 9Given that (x + 9) was 56% of the sum of their marks =>(x+9)=(56/100)(2x+9)=>(x+9)=(14/25)(2x+9)=> 25x + 225 = 28x + 126=> 3x = 99 => x = 33 Then (x + 9) = 33 + 9 = 42Hence their marks are 33 and 42

EXAMPLE 12: If **20% of a = b**, then **b% of 20 is** the same as:

Explanation : 20% of a = b \Rightarrow **b = (20/100)a** \Rightarrow **b% of 20 = (b/100)*20** \Rightarrow =[{(20/100)*a}/100]*20 \Rightarrow =(20×20×a)/100×100 \Rightarrow =4*a/100 = 4% of a **EXAMPLE 13:** In a competitive examination in State A, 6% candidates got selected from the total appeared candidates. State B had an equal number of candidates appeared and 7% candidates got selected with 80 more candidates got selected than A. What was the number of candidates appeared from each State? Explanation :

State A and State B had an equal number of candidates appeared. In state A, 6% candidates got selected from the total appeared candidates

In state B, 7% candidates got selected from the total appeared candidates

But in State B, 80 more candidates got selected than State A From these, it is clear that **1% of the total appeared candidates in State B = 80**

=> total appeared candidates in <u>State B = 80 x 100 = 8000</u> => total appeared candidates <u>in State A = total appeared candidates</u> <u>in State B = 8000</u>

EXAMPLE 14: A student multiplied a number by **3/5** instead of **5/3.What is the percentage error in the calculation**? **Explanation :**

Let the number = 1

Then, ideally he should have multiplied 1 by 5/3. Hence the correct result was $1 \ge (5/3) = (5/3)$ By mistake, he multiplied 1 by 3/5. Hence the result with the error = $1 \times (3/5) = (3/5)$ Error = (5/3) - (3/5) = (25-9)/15 = 16/15percentage error = (Error/True Value)×100 $=[(16/15)(5/3)]\times 100$ $=(16 \times 3 \times 100)/(15 \times 5)$ $=(16 \times 100)/(5 \times 5)$ $=16 \times 4 = 64\%$

EXAMPLE 15:

Aman got **30%** of the maximum marks in an examination and failed by **10** marks. However, Suman who took the same examination got **40%** of the total marks and got **15** marks more than the passing marks. What were the **passing marks in the examination**?

Explanation : Let x is the maximum marks of the examination Marks that Aman got = 30 % of x = (30*x)/100Given that Aman failed by 10 marks \Rightarrow Minimum Pass Mark = [(30*x)/100]+10.....(Equation 1) Marks that Suman got = 40 % of x = (40*x)/100Given that **Suman got 15 marks more than the passing marks** \Rightarrow (40*x)/100 =Minimum Pass Mark +15 \Rightarrow Minimum Pass Mark = [(40*x)/100] -15.....(Equation 2) From equations 1 and 2, we have [(30*x)/100]+10 = [(40*x)/100]-15 $\Rightarrow (10*x)/100 = 10+15 = 25$ \Rightarrow x/10=25 \Rightarrow x = 10×25 = 250 \Rightarrow Maximum marks of the examination = x = 250 Substituting the value of x in Equation 1, we have Minimum Pass Mark = [(30*x)/100]+10 $= [(30 \times 250) / 100] + 10 = 75 + 10 = 85.$

THANK YOU.